Zhao Mi, Shi Yu, He Maoxian, Huang Xiande, Wang Qi
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
BMC Dev Biol. 2016 Apr 26;16:9. doi: 10.1186/s12861-016-0110-4.
Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2 signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling pathway in mammals, and some genomic data show SMAD4's involvement in BMP signaling in invertebrates, but whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested.
In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata. Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences.
Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P. fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl oyster.
软体动物是自然界中第二大门类。软体动物的贝壳是天然复合生物材料的显著例子。生物矿化及其对软体动物的影响是一个热门研究课题。BMP-2信号通路在生物矿化中起典型作用。SMAD4是哺乳动物BMP信号通路中的细胞内信号转导分子,一些基因组数据显示SMAD4参与无脊椎动物的BMP信号传导,但SMAD4在合浦珠母贝中是否发挥保守作用仍有待验证。
在本研究中,我们在合浦珠母贝中鉴定出一个SMAD4基因(以下称为PfSMAD4)。对PfSMAD4的生物信息学分析表明其与直系同源基因具有高度同源性。免疫荧光分析显示PfSMAD4定位于细胞质中,对PfSMAD4 mRNA在组织和发育阶段的分析表明其在卵巢和D形幼虫中高表达。通过注射PfSMAD4双链RNA(dsRNA)进行的RNA干扰实验表明,PfSMAD4表达降低不仅抑制了珍珠层生长,还抑制了有机片层形成。使用PfBMP2 dsRNA的敲低实验显示PfBMP2和PfSMAD4 mRNA减少,扫描电子显微镜观察显示珍珠层结晶不规则。在共转染实验中,含有PfSMAD4启动子序列的PfBMP2可反式激活报告基因构建体。
我们的结果表明PfSMAD4在生物矿化中起作用,并能在合浦珠母贝中转导BMP信号。我们的数据为调节珍珠贝生物矿化的分子机制提供了重要线索。