Suppr超能文献

Cpf1与向导RNA及靶DNA复合物的晶体结构

Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA.

作者信息

Yamano Takashi, Nishimasu Hiroshi, Zetsche Bernd, Hirano Hisato, Slaymaker Ian M, Li Yinqing, Fedorova Iana, Nakane Takanori, Makarova Kira S, Koonin Eugene V, Ishitani Ryuichiro, Zhang Feng, Nureki Osamu

机构信息

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; JST, PRESTO, Tokyo 113-0032, Japan.

出版信息

Cell. 2016 May 5;165(4):949-62. doi: 10.1016/j.cell.2016.04.003. Epub 2016 Apr 21.

Abstract

Cpf1 is an RNA-guided endonuclease of a type V CRISPR-Cas system that has been recently harnessed for genome editing. Here, we report the crystal structure of Acidaminococcus sp. Cpf1 (AsCpf1) in complex with the guide RNA and its target DNA at 2.8 Å resolution. AsCpf1 adopts a bilobed architecture, with the RNA-DNA heteroduplex bound inside the central channel. The structural comparison of AsCpf1 with Cas9, a type II CRISPR-Cas nuclease, reveals both striking similarity and major differences, thereby explaining their distinct functionalities. AsCpf1 contains the RuvC domain and a putative novel nuclease domain, which are responsible for cleaving the non-target and target strands, respectively, and for jointly generating staggered DNA double-strand breaks. AsCpf1 recognizes the 5'-TTTN-3' protospacer adjacent motif by base and shape readout mechanisms. Our findings provide mechanistic insights into RNA-guided DNA cleavage by Cpf1 and establish a framework for rational engineering of the CRISPR-Cpf1 toolbox.

摘要

Cpf1是V型CRISPR-Cas系统的一种RNA引导的核酸内切酶,最近已被用于基因组编辑。在此,我们报告嗜酸栖热菌(Acidaminococcus sp.)Cpf1(AsCpf1)与引导RNA及其靶DNA形成复合物的晶体结构,分辨率为2.8埃。AsCpf1采用双叶结构,RNA-DNA异源双链结合在中央通道内。AsCpf1与II型CRISPR-Cas核酸酶Cas9的结构比较揭示了显著的相似性和主要差异,从而解释了它们不同的功能。AsCpf1包含RuvC结构域和一个推定的新型核酸酶结构域,分别负责切割非靶链和靶链,并共同产生交错的DNA双链断裂。AsCpf1通过碱基和形状识别机制识别5'-TTTN-3'原间隔相邻基序。我们的研究结果为Cpf1介导的RNA引导的DNA切割提供了机制上的见解,并为CRISPR-Cpf1工具箱的合理工程设计建立了框架。

相似文献

1
Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA.
Cell. 2016 May 5;165(4):949-62. doi: 10.1016/j.cell.2016.04.003. Epub 2016 Apr 21.
2
Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.
3
Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
Mol Cell. 2017 Jul 6;67(1):139-147.e2. doi: 10.1016/j.molcel.2017.04.019. Epub 2017 Jun 6.
4
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
5
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
6
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
7
Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage.
Nature. 2017 Jun 22;546(7659):559-563. doi: 10.1038/nature22398. Epub 2017 May 31.
8
Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA.
Acta Crystallogr F Struct Biol Commun. 2017 Jul 1;73(Pt 7):409-415. doi: 10.1107/S2053230X1700838X. Epub 2017 Jun 20.
9
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.
10
Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition.
Cell Res. 2016 Aug;26(8):901-13. doi: 10.1038/cr.2016.88. Epub 2016 Jul 22.

引用本文的文献

1
Engineering and comparison of cas12a-based genome editing systems in plants.
Plant J. 2025 Sep;123(5):e70410. doi: 10.1111/tpj.70410.
2
Conformational changes induced by K949A mutation in the CRISPR-Cas12a complex drives an effective target-binding mechanism.
Curr Res Struct Biol. 2025 Aug 8;10:100173. doi: 10.1016/j.crstbi.2025.100173. eCollection 2025 Dec.
3
Kinetic basis for Cas12a off-target discrimination.
BMB Rep. 2025 Aug;58(8):364-368. doi: 10.5483/BMBRep.2025-0073.
4
Revolutionizing CRISPR technology with artificial intelligence.
Exp Mol Med. 2025 Jul;57(7):1419-1431. doi: 10.1038/s12276-025-01462-9. Epub 2025 Jul 31.
5
Emerging trends in prime editing for precision genome editing.
Exp Mol Med. 2025 Jul;57(7):1381-1391. doi: 10.1038/s12276-025-01463-8. Epub 2025 Jul 31.
7
Directed evolution expands CRISPR-Cas12a genome-editing capacity.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf649.
8
Mechanisms and engineering of a miniature type V-N CRISPR-Cas12 effector enzyme.
Nat Commun. 2025 Jul 1;16(1):5667. doi: 10.1038/s41467-025-61290-3.
9
Design principle of successful genome editing applications using CRISPR-based toolkits.
J Appl Genet. 2025 Jul 1. doi: 10.1007/s13353-025-00979-z.
10
Programmable genome engineering and gene modifications for plant biodesign.
Plant Commun. 2025 Aug 11;6(8):101427. doi: 10.1016/j.xplc.2025.101427. Epub 2025 Jun 24.

本文引用的文献

1
Structure and Engineering of Francisella novicida Cas9.
Cell. 2016 Feb 25;164(5):950-61. doi: 10.1016/j.cell.2016.01.039. Epub 2016 Feb 11.
2
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.
3
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.
4
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
5
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
6
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems.
Mol Cell. 2015 Nov 5;60(3):385-97. doi: 10.1016/j.molcel.2015.10.008. Epub 2015 Oct 22.
7
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements.
Genome Biol. 2015 Nov 19;16:253. doi: 10.1186/s13059-015-0818-7.
8
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition.
Nat Biotechnol. 2015 Dec;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub 2015 Nov 2.
9
Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.
Cell. 2015 Nov 5;163(4):854-65. doi: 10.1016/j.cell.2015.10.003.
10
CRISPR-Cas immunity in prokaryotes.
Nature. 2015 Oct 1;526(7571):55-61. doi: 10.1038/nature15386.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验