Suppr超能文献

用于植物生物设计的可编程基因组工程和基因修饰

Programmable genome engineering and gene modifications for plant biodesign.

作者信息

Liu Jialin, Zhang Ruixiang, Chai Nan, Su Liying, Zheng Zhiye, Liu Taoli, Guo Ziming, Ma Yuanhao, Xie Yongyao, Xie Xianrong, Lin Qiupeng, Chen Letian, Liu Yao-Guang, Zhu Qinlong

机构信息

Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.

Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.

出版信息

Plant Commun. 2025 Aug 11;6(8):101427. doi: 10.1016/j.xplc.2025.101427. Epub 2025 Jun 24.

Abstract

Plant science has entered a transformative era as genome editing enables precise DNA modifications to address global challenges such as climate adaptation and food security. These modifications are primarily driven by the integration of three modular components-DNA-targeting modules, effector modules, and control modules-that can be selectively activated or suppressed. The field has evolved from protein-based systems (e.g., zinc finger nucleases and transcription activator-like effector nucleases) to RNA-guided systems (e.g., CRISPR-Cas) that can control both genetic and epigenetic states. Modular pairing of DNA-targeting and effector domains, with or without inducible control, enables precise transcriptional regulation and chromatin remodeling. The present review examines these three modules and highlights strategies for their optimization. It also outlines innovative tools, such as optogenetic and receptor-integrated systems, that enable spatiotemporal control over genome editor expression. These modular approaches bypass traditional limitations and allow scientists to create plants with desirable traits, decipher complex gene networks, and promote sustainable agriculture.

摘要

随着基因组编辑能够实现精确的DNA修饰,以应对诸如气候适应和粮食安全等全球挑战,植物科学已进入一个变革性的时代。这些修饰主要由三个模块化组件——DNA靶向模块、效应器模块和控制模块——的整合驱动,这些组件可以被选择性地激活或抑制。该领域已从基于蛋白质的系统(如锌指核酸酶和转录激活样效应核酸酶)发展到能够控制遗传和表观遗传状态的RNA引导系统(如CRISPR-Cas)。DNA靶向结构域和效应器结构域的模块化配对,无论有无诱导控制,都能实现精确的转录调控和染色质重塑。本综述研究了这三个模块,并强调了对其进行优化的策略。它还概述了创新工具,如光遗传学和受体整合系统,这些工具能够对基因组编辑器的表达进行时空控制。这些模块化方法绕过了传统的限制,使科学家能够创造出具有理想性状的植物,破译复杂的基因网络,并促进可持续农业的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20f4/12365832/8a6e5948e57a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验