Suppr超能文献

果蝇中的巨噬细胞和细胞免疫。

Macrophages and cellular immunity in Drosophila melanogaster.

机构信息

Department of Cell and Tissue Biology.

Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.

出版信息

Semin Immunol. 2015 Dec;27(6):357-68. doi: 10.1016/j.smim.2016.03.010. Epub 2016 Apr 23.

Abstract

The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.

摘要

无脊椎动物果蝇(Drosophila melanogaster)一直是理解血细胞发育和免疫的强大模型。果蝇是一种全变态昆虫,经历从胚胎、幼虫和蛹到成虫的一系列生命阶段。尽管如此,果蝇和脊椎动物巨噬细胞之间在发育和功能方面存在显著的相似之处。超过 90%的果蝇血细胞(血细胞)是巨噬细胞(浆细胞),这使得这个高度可操作的遗传系统很有吸引力,可以用来研究巨噬细胞生物学中的各种问题。在脊椎动物中,最近的发现揭示了巨噬细胞有两个独立的起源:自我更新的巨噬细胞,存在于各种组织的局部微环境中并增殖,以及单核细胞谱系的巨噬细胞,它们来源于造血干细胞或祖细胞。与脊椎动物一样,果蝇具有两个具有保守双重发生的巨噬细胞谱系。这些相似之处使我们能够在研究巨噬细胞谱系特化、维持和扩增,以及局部微环境和系统线索诱导巨噬细胞及其前体细胞时,利用果蝇模型。除了巨噬细胞的发育之外,果蝇还进一步成为了一个范例,用于理解在感染、组织稳态和癌症等方面,发育和成年生活中巨噬细胞功能和细胞免疫的机制。

相似文献

1
Macrophages and cellular immunity in Drosophila melanogaster.
Semin Immunol. 2015 Dec;27(6):357-68. doi: 10.1016/j.smim.2016.03.010. Epub 2016 Apr 23.
2
Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in Drosophila melanogaster.
Mol Immunol. 2010 Jul;47(11-12):1997-2004. doi: 10.1016/j.molimm.2010.04.017. Epub 2010 May 18.
3
Drosophila as a model for the two myeloid blood cell systems in vertebrates.
Exp Hematol. 2014 Aug;42(8):717-27. doi: 10.1016/j.exphem.2014.06.002. Epub 2014 Jun 17.
6
Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity.
PLoS One. 2010 Nov 19;5(11):e14051. doi: 10.1371/journal.pone.0014051.
7
The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.
Dev Comp Immunol. 2014 Jan;42(1):47-56. doi: 10.1016/j.dci.2013.06.005. Epub 2013 Jun 22.
8
The Drosophila lymph gland is an ideal model for studying hematopoiesis.
Dev Comp Immunol. 2018 Jun;83:60-69. doi: 10.1016/j.dci.2017.11.017. Epub 2017 Nov 27.
9
There and back again: The mechanisms of differentiation and transdifferentiation in Drosophila blood cells.
Dev Biol. 2021 Jan 1;469:135-143. doi: 10.1016/j.ydbio.2020.10.006. Epub 2020 Oct 23.

引用本文的文献

2
Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster.
EMBO Rep. 2025 Apr;26(8):2077-2097. doi: 10.1038/s44319-025-00366-z. Epub 2025 Mar 12.
4
Macrophage invasion into the Drosophila brain requires JAK/STAT-dependent MMP activation in the blood-brain barrier.
PLoS Biol. 2025 Feb 20;23(2):e3003035. doi: 10.1371/journal.pbio.3003035. eCollection 2025 Feb.
6
Adhesive and mechanical properties of the glue produced by 25 Drosophila species.
Sci Rep. 2024 Oct 6;14(1):23249. doi: 10.1038/s41598-024-74358-9.
7
Dysregulation of innate immune signaling in animal models of spinal muscular atrophy.
BMC Biol. 2024 Apr 25;22(1):94. doi: 10.1186/s12915-024-01888-z.
8
Using Drosophila to uncover the role of organismal physiology and the tumor microenvironment in cancer.
Trends Cancer. 2024 Apr;10(4):289-311. doi: 10.1016/j.trecan.2024.01.007. Epub 2024 Feb 13.
9
Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila.
Dev Cell. 2024 Mar 11;59(5):566-578.e3. doi: 10.1016/j.devcel.2024.01.009. Epub 2024 Feb 2.
10
Dysregulation of innate immune signaling in animal models of Spinal Muscular Atrophy.
bioRxiv. 2023 Dec 15:2023.12.14.571739. doi: 10.1101/2023.12.14.571739.

本文引用的文献

1
Extracellular Reactive Oxygen Species Drive Apoptosis-Induced Proliferation via Drosophila Macrophages.
Curr Biol. 2016 Mar 7;26(5):575-84. doi: 10.1016/j.cub.2015.12.064. Epub 2016 Feb 18.
2
Tissue biology perspective on macrophages.
Nat Immunol. 2016 Jan;17(1):9-17. doi: 10.1038/ni.3320.
3
Assaying Blood Cell Populations of the Drosophila melanogaster Larva.
J Vis Exp. 2015 Nov 11(105):52733. doi: 10.3791/52733.
4
Innervation of the rabbit cardiac ventricles.
J Anat. 2016 Jan;228(1):26-46. doi: 10.1111/joa.12400. Epub 2015 Oct 29.
5
Companion Blood Cells Control Ovarian Stem Cell Niche Microenvironment and Homeostasis.
Cell Rep. 2015 Oct 20;13(3):546-560. doi: 10.1016/j.celrep.2015.09.008. Epub 2015 Oct 8.
6
JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.
EMBO Rep. 2015 Dec;16(12):1664-72. doi: 10.15252/embr.201540277. Epub 2015 Sep 27.
7
Apoptosis in Hemocytes Induces a Shift in Effector Mechanisms in the Drosophila Immune System and Leads to a Pro-Inflammatory State.
PLoS One. 2015 Aug 31;10(8):e0136593. doi: 10.1371/journal.pone.0136593. eCollection 2015.
8
Drosophila immune cell migration and adhesion during embryonic development and larval immune responses.
Curr Opin Cell Biol. 2015 Oct;36:71-9. doi: 10.1016/j.ceb.2015.07.003. Epub 2015 Jul 24.
9
The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9052-7. doi: 10.1073/pnas.1423967112. Epub 2015 Jul 6.
10
Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo.
Cell Rep. 2015 Jun 30;11(12):1892-904. doi: 10.1016/j.celrep.2015.05.036. Epub 2015 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验