Suppr超能文献

在一组字符串中工作的最大间隔分类器。

Maximum margin classifier working in a set of strings.

作者信息

Koyano Hitoshi, Hayashida Morihiro, Akutsu Tatsuya

机构信息

Laboratory of Biostatistics and Bioinformatics , Graduate School of Medicine, Kyoto University , 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.

Laboratory of Mathematical Bioinformatics , Institute for Chemical Research, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan.

出版信息

Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150551. doi: 10.1098/rspa.2015.0551.

Abstract

Numbers and numerical vectors account for a large portion of data. However, recently, the amount of string data generated has increased dramatically. Consequently, classifying string data is a common problem in many fields. The most widely used approach to this problem is to convert strings into numerical vectors using string kernels and subsequently apply a support vector machine that works in a numerical vector space. However, this non-one-to-one conversion involves a loss of information and makes it impossible to evaluate, using probability theory, the generalization error of a learning machine, considering that the given data to train and test the machine are strings generated according to probability laws. In this study, we approach this classification problem by constructing a classifier that works in a set of strings. To evaluate the generalization error of such a classifier theoretically, probability theory for strings is required. Therefore, we first extend a limit theorem for a consensus sequence of strings demonstrated by one of the authors and co-workers in a previous study. Using the obtained result, we then demonstrate that our learning machine classifies strings in an asymptotically optimal manner. Furthermore, we demonstrate the usefulness of our machine in practical data analysis by applying it to predicting protein-protein interactions using amino acid sequences and classifying RNAs by the secondary structure using nucleotide sequences.

摘要

数字和数值向量占据了数据的很大一部分。然而,近年来,生成的字符串数据量急剧增加。因此,对字符串数据进行分类是许多领域中常见的问题。解决这个问题最广泛使用的方法是使用字符串核将字符串转换为数值向量,随后应用在数值向量空间中工作的支持向量机。然而,这种非一对一的转换会导致信息丢失,并且由于用于训练和测试机器的给定数据是根据概率定律生成的字符串,因此无法使用概率论来评估学习机器的泛化误差。在本研究中,我们通过构建在一组字符串中工作的分类器来解决这个分类问题。为了从理论上评估这种分类器的泛化误差,需要字符串的概率论。因此,我们首先扩展了一位作者及其同事在先前研究中证明的字符串一致序列的极限定理。利用得到的结果,我们证明了我们的学习机器以渐近最优的方式对字符串进行分类。此外,我们通过将其应用于使用氨基酸序列预测蛋白质 - 蛋白质相互作用以及使用核苷酸序列按二级结构对RNA进行分类,证明了我们的机器在实际数据分析中的有用性。

相似文献

1
Maximum margin classifier working in a set of strings.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150551. doi: 10.1098/rspa.2015.0551.
2
Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Sep-Oct;8(5):1400-10. doi: 10.1109/TCBB.2011.21.
3
Fast motif recognition via application of statistical thresholds.
BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S11. doi: 10.1186/1471-2105-11-S1-S11.
4
Implementation of a Hamming distance-like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne.
Quantum Mach Intell. 2020;2(1):1-26. doi: 10.1007/s42484-020-00017-7. Epub 2020 Jul 17.
5
Closest string with outliers.
BMC Bioinformatics. 2011 Feb 15;12 Suppl 1(Suppl 1):S55. doi: 10.1186/1471-2105-12-S1-S55.
8
Experimental and Computer Simulation Studies on Badminton Racquet Strings.
Sensors (Basel). 2023 Jun 27;23(13):5957. doi: 10.3390/s23135957.
9
A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.
Bioinformatics. 2011 Jul 15;27(14):1901-7. doi: 10.1093/bioinformatics/btr321. Epub 2011 Jun 2.
10
Prototype classification: insights from machine learning.
Neural Comput. 2009 Jan;21(1):272-300. doi: 10.1162/neco.2008.01-07-443.

本文引用的文献

1
Rfam 12.0: updates to the RNA families database.
Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7. doi: 10.1093/nar/gku1063. Epub 2014 Nov 11.
2
Biological sequence classification with multivariate string kernels.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Sep-Oct;10(5):1201-10. doi: 10.1109/TCBB.2013.15.
3
3did: a catalog of domain-based interactions of known three-dimensional structure.
Nucleic Acids Res. 2014 Jan;42(Database issue):D374-9. doi: 10.1093/nar/gkt887. Epub 2013 Sep 29.
4
The RCSB Protein Data Bank: redesigned web site and web services.
Nucleic Acids Res. 2011 Jan;39(Database issue):D392-401. doi: 10.1093/nar/gkq1021. Epub 2010 Oct 29.
5
Exploiting physico-chemical properties in string kernels.
BMC Bioinformatics. 2010 Oct 26;11 Suppl 8(Suppl 8):S7. doi: 10.1186/1471-2105-11-S8-S7.
6
Quantifying biodiversity and asymptotics for a sequence of random strings.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061912. doi: 10.1103/PhysRevE.81.061912. Epub 2010 Jun 7.
7
Physicochemical property distributions for accurate and rapid pairwise protein homology detection.
BMC Bioinformatics. 2010 Mar 19;11:145. doi: 10.1186/1471-2105-11-145.
8
TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.
Bioinformatics. 2009 Oct 15;25(20):2625-31. doi: 10.1093/bioinformatics/btp503. Epub 2009 Aug 19.
9
Efficient use of unlabeled data for protein sequence classification: a comparative study.
BMC Bioinformatics. 2009 Apr 29;10 Suppl 4(Suppl 4):S2. doi: 10.1186/1471-2105-10-S4-S2.
10
Remote protein homology detection using recurrence quantification analysis and amino acid physicochemical properties.
J Theor Biol. 2008 May 7;252(1):145-54. doi: 10.1016/j.jtbi.2008.01.028. Epub 2008 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验