Suppr超能文献

外照射下组织中切伦科夫激发荧光与磷光分子传感的比较。

Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

作者信息

Lin Huiyun, Zhang Rongxiao, Gunn Jason R, Esipova Tatiana V, Vinogradov Sergei, Gladstone David J, Jarvis Lesley A, Pogue Brian W

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fujian 350007, People's Republic of China.

出版信息

Phys Med Biol. 2016 May 21;61(10):3955-68. doi: 10.1088/0031-9155/61/10/3955. Epub 2016 Apr 27.

Abstract

Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5 nmol of dye was readily detected with radiation doses less than 5 cGy. Since concentration, radiation dose and depth each contribute to the level of the detected signal, it may be possible to improve any of these parameters at expense of the others. This paradigm of nanoMolar sensitivity for optical reporters in vivo introduces the concept of molecular sensing of tumors during therapy or diagnostically with biologically relevant concentrations of fluorescent reporters.

摘要

医用直线加速器(LINAC)产生的电离辐射会在被治疗组织内产生切伦科夫辐射。其中一部分波长在600 - 900纳米区域的光会在几厘米厚的组织中传播,并可用于激发体内的光学探针,从而实现对组织分析物的分子传感。从这种切伦科夫激发背景中分离出发射信号是否成功取决于以下关键因素:(i)探针光谱的斯托克斯位移;(ii)激发态寿命;(iii)探针浓度;(iv)组织表面以下的深度;以及(v)所使用的辐射剂量。以往的研究只专注于对磷光染料成像,而非荧光染料。然而,具有生物学重要性的磷光染料只有少数几种,相比之下,具有生物学相关性的荧光染料却有数千种。因此,在本研究中,重点是研究使用商业化近红外荧光探针IRDye 680RD、IRDye 700DX和IRDye 800CW进行切伦科夫激发发光的效果,并将它们与特征明确的磷光探针Oxyphor PtG4(一种氧敏染料)进行比较。每种探针都由来自6兆伏外部辐射束的切伦科夫光激发,并在连续波或时间门控模式下进行测量。通过对发光信号进行光谱解析,并在ICCD探测器上基于光谱仪分离进行测量来进行检测。结果表明,IRDye 700DX和PtG4实现了最大信噪比。对于磷光探针PtG4,其发射衰减在微秒(μs)时间尺度上,因此可以进行时间门控采集,并且在探针浓度和检测深度方面具有更高的效率。在深度为5毫米处含有探针的模型,在低至纳摩尔范围的浓度下以及在接近3厘米深的组织模拟模型中都能被检测到。体内研究表明,辐射剂量小于5厘戈时,5纳摩尔的染料很容易被检测到。由于浓度、辐射剂量和深度都会对检测信号的水平产生影响,所以有可能以牺牲其他参数为代价来改善其中任何一个参数。这种体内光学报告分子纳摩尔灵敏度的模式引入了在治疗期间或诊断时用生物学相关浓度的荧光报告分子对肿瘤进行分子传感的概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验