Suppr超能文献

用于评估组织胶原蛋白损伤的生物力学、电学和生物学方法的比较与评价

Comparison and evaluation of biomechanical, electrical, and biological methods for assessment of damage to tissue collagen.

作者信息

Hepfer R Glenn, Brockbank Kelvin G M, Chen Zhen, Greene Elizabeth D, Campbell Lia H, Wright Gregory J, Linthurst-Jones Alyce, Yao Hai

机构信息

Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue MSC 508, Charleston, SC, 29425, USA.

Tissue Testing Technologies LLC, North Charleston, SC, USA.

出版信息

Cell Tissue Bank. 2016 Sep;17(3):531-9. doi: 10.1007/s10561-016-9560-y. Epub 2016 Apr 29.

Abstract

In regard to evaluating tissue banking methods used to preserve or otherwise treat (process) soft allograft tissue, current tests may not be sufficiently sensitive to detect potential damage inflicted before, during, and after processing. Using controlled parameters, we aim to examine the sensitivity of specific biomechanical, electrical, and biological tests in detecting mild damage to collagen. Fresh porcine pulmonary heart valves were treated with an enzyme, collagenase, and incubated using various times. Controls received no incubation. All valves were cryopreserved and stored at -135 °C until being rewarmed for evaluation using biomechanical, permeability, and cell viability tests. Statistically significant time dependent changes in leaflet ultimate stress, (p = 0.006), permeability (p = 0.01), and viability (p ≤ 0.02, four different days of culture) were found between heart valves subjected to 0-15 min of collagenase treatment (ANOVA). However, no statistical significance was found between the tensile modulus of treated and untreated valves (p = 0.07). Furthermore, the trends of decreasing and increasing ultimate stress and viability, respectively, were somewhat inconsistent across treatment times. These results suggest that permeability tests may offer a sensitive, quantitative assay to complement traditional biomechanical and viability tests in evaluating processing methods used for soft tissue allografts, or when making changes to current validated methods. Multiple test evaluation may also offer insight into the mechanism of potential tissue damage such as, as is the case here, reduced collagen content and increased tissue porosity.

摘要

关于评估用于保存或处理(加工)同种异体软组织的组织库方法,当前的测试可能不够灵敏,无法检测在加工前、加工过程中和加工后造成的潜在损伤。我们旨在通过控制参数,检验特定生物力学、电学和生物学测试在检测胶原蛋白轻度损伤方面的敏感性。用胶原酶对新鲜猪肺动脉瓣进行处理,并在不同时间进行孵育。对照组不进行孵育。所有瓣膜均进行冷冻保存,并在-135°C下储存,直至复温后使用生物力学、通透性和细胞活力测试进行评估。在接受0至15分钟胶原酶处理的心脏瓣膜之间,发现瓣叶极限应力(p = 0.006)、通透性(p = 0.01)和活力(p≤0.02,四天不同培养时间)存在统计学上显著的时间依赖性变化(方差分析)。然而,处理过的瓣膜和未处理的瓣膜的拉伸模量之间未发现统计学显著性(p = 0.07)。此外,极限应力和活力分别下降和上升的趋势在不同处理时间内有些不一致。这些结果表明,通透性测试可能提供一种灵敏的定量分析方法,以补充传统的生物力学和活力测试,用于评估同种异体软组织的加工方法,或在对当前经过验证的方法进行更改时。多种测试评估也可能有助于深入了解潜在组织损伤机制,如此处所示,即胶原蛋白含量降低和组织孔隙率增加。

相似文献

1
Comparison and evaluation of biomechanical, electrical, and biological methods for assessment of damage to tissue collagen.
Cell Tissue Bank. 2016 Sep;17(3):531-9. doi: 10.1007/s10561-016-9560-y. Epub 2016 Apr 29.
2
The Impact of Heat Treatment on Porcine Heart Valve Leaflets.
Cardiovasc Eng Technol. 2018 Mar;9(1):32-41. doi: 10.1007/s13239-017-0334-x. Epub 2017 Nov 13.
4
6
Tissue-engineered mitral valve: morphology and biomechanics †.
Interact Cardiovasc Thorac Surg. 2015 Jun;20(6):712-9; discussion 719. doi: 10.1093/icvts/ivv039. Epub 2015 Mar 11.
10
Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells.
Ann Thorac Surg. 2006 Jun;81(6):2207-16. doi: 10.1016/j.athoracsur.2005.12.073.

引用本文的文献

1
2
The time has come to extend the expiration limit of cryopreserved allograft heart valves.
Cell Tissue Bank. 2021 Jun;22(2):161-184. doi: 10.1007/s10561-020-09843-2. Epub 2020 Jun 24.
3
The Impact of Heat Treatment on Porcine Heart Valve Leaflets.
Cardiovasc Eng Technol. 2018 Mar;9(1):32-41. doi: 10.1007/s13239-017-0334-x. Epub 2017 Nov 13.

本文引用的文献

1
Heart disease and stroke statistics--2015 update: a report from the American Heart Association.
Circulation. 2015 Jan 27;131(4):e29-322. doi: 10.1161/CIR.0000000000000152. Epub 2014 Dec 17.
2
Vitrification of heart valve tissues.
Methods Mol Biol. 2015;1257:399-421. doi: 10.1007/978-1-4939-2193-5_20.
3
Impact of Hypothermia upon Chondrocyte Viability and Cartilage Matrix Permeability after 1 Month of Refrigerated Storage.
Transfus Med Hemother. 2011 Dec;38(6):387-392. doi: 10.1159/000334595. Epub 2011 Nov 14.
4
Raman spectroscopy for the non-contact and non-destructive monitoring of collagen damage within tissues.
J Biophotonics. 2012 Jan;5(1):47-56. doi: 10.1002/jbio.201100068. Epub 2011 Sep 27.
6
Effect of mechanical loading on electrical conductivity in porcine TMJ discs.
J Dent Res. 2011 Oct;90(10):1216-20. doi: 10.1177/0022034511415275. Epub 2011 Jul 8.
7
Allogeneic heart valve storage above the glass transition at -80°C.
Ann Thorac Surg. 2011 Jun;91(6):1829-35. doi: 10.1016/j.athoracsur.2011.02.043. Epub 2011 May 4.
8
Guidance for removal of fetal bovine serum from cryopreserved heart valve processing.
Cells Tissues Organs. 2011;193(4):264-73. doi: 10.1159/000321166. Epub 2010 Dec 1.
9
Heart valve structure and function in development and disease.
Annu Rev Physiol. 2011;73:29-46. doi: 10.1146/annurev-physiol-012110-142145.
10
TRANSPORT PROPERTIES OF CARTILAGINOUS TISSUES.
Curr Rheumatol Rev. 2009 Feb 1;5(1):40. doi: 10.2174/157339709787315320.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验