Division of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders Building, EN 407, Boston, MA, 02115, USA.
Harvard Medical School, Boston, MA, USA.
Clin Transl Med. 2016 Mar;5(1):16. doi: 10.1186/s40169-016-0095-4. Epub 2016 Apr 29.
Mitochondria play a key role in the homeostasis of the vast majority of the body's cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium is restored, and significantly decrease myocardial contractile function and myocardial cell survival. We hypothesized that the augmentation or replacement of mitochondria damaged by ischemia would provide a mechanism to enhance cellular function and cellular rescue following the restoration of blood flow. To test this hypothesis we have used a model of myocardial ischemia and reperfusion. Our studies demonstrate that the transplantation of autologous mitochondria, isolated from the patient's own body, and then directly injected into the myocardial during early reperfusion augment the function of native mitochondria damaged during ischemia and enhances myocardial post-ischemic functional recovery and cellular viability. The transplanted mitochondria act both extracellularly and intracellularly. Extracellularly, the transplanted mitochondria enhance high energy synthesis and cellular adenosine triphosphate stores and alter the myocardial proteome. Once internalized the transplanted mitochondria rescue cellular function and replace damaged mitochondrial DNA. There is no immune or auto-immune reaction and there is no pro-arrhythmia as a result of the transplanted mitochondria. Our studies and those of others demonstrate that mitochondrial transplantation can be effective in a number of cell types and diseases. These include cardiac and skeletal muscle, pulmonary and hepatic tissue and cells and in neuronal tissue. In this review we discuss the mechanisms leading to mitochondrial dysfunction and the effects on cellular function. We provide a methodology for the isolation of mitochondria to allow for clinical relevance and we discuss the methods we and others have used for the uptake and internalization of mitochondria. We foresee that mitochondrial transplantation will be a valued treatment in the armamentarium of all clinicians and surgeons for the treatment of varied ischemic disorders, mitochondrial diseases and related disorders.
线粒体在绝大多数细胞的内环境稳定中发挥着关键作用。在心 肌中,线粒体占心肌细胞总体积的 30%,短暂的血流减弱或阻塞, 以及随之而来的心肌细胞供氧(缺血),会严重改变线粒体的结构 和功能。这些线粒体结构和功能的改变发生在缺血期间,并在血流 和氧供恢复后持续存在,显著降低心肌收缩功能和心肌细胞存活。 我们假设,通过增强或替换缺血损伤的线粒体,可以提供一种机制, 在恢复血流后增强细胞功能和细胞拯救。为了验证这一假设,我们 使用了心肌缺血再灌注模型。我们的研究表明,将从患者自身体 内分离出的自体线粒体在早期再灌注期间直接注入心肌,可以增强 在缺血过程中受损的内源性线粒体的功能,并增强心肌缺血后的功 能恢复和细胞活力。移植的线粒体既可以在细胞外起作用,也可以 在细胞内起作用。在细胞外,移植的线粒体增强高能合成和细胞三磷 酸腺苷(ATP)的储存,并改变心肌蛋白质组。一旦被内化,移植 的线粒体可以挽救细胞功能并替代受损的线粒体 DNA。由于移植的 线粒体没有免疫或自身免疫反应,也不会引起心律失常。我们的研 究和其他人的研究表明,线粒体移植可以在多种细胞类型和疾病中 发挥作用。这些疾病包括心脏和骨骼肌、肺和肝组织和细胞以及神 经组织中的疾病。在这篇综述中,我们讨论了导致线粒体功能障碍 的机制以及对细胞功能的影响。我们提供了一种分离线粒体的方法, 使其具有临床相关性,并讨论了我们和其他人用于摄取和内化线粒 体的方法。我们预计,线粒体移植将成为所有临床医生和外科医生 治疗各种缺血性疾病、线粒体疾病和相关疾病的宝贵治疗方法。