Suppr超能文献

骨骼肌和平滑肌中钙激活钾通道的流动电位测量。离子通量与水通量的耦合。

Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes.

作者信息

Alcayaga C, Cecchi X, Alvarez O, Latorre R

机构信息

Departamento de Biología Facultad de Ciencias, Universidad de Chile, Santiago.

出版信息

Biophys J. 1989 Feb;55(2):367-71. doi: 10.1016/S0006-3495(89)82814-0.

Abstract

Streaming potentials arising across large-conductance Ca2+-activated K+ channels incorporated into planar lipid bilayers were measured. Ca2+-activated channels obtained either from skeletal muscle or from smooth muscle membranes were used. Streaming potentials were extracted from the current-voltage relationship for the open channel obtained in the presence of an osmotic gradient. The osmotic gradient was established by adding glucose to one side of the membrane. At 300 mM KCl, the average streaming potential was 0.72 mV/osmol per kg for t-tubule channels and 0.83 mV/osmol per kg for smooth muscle channels. Streaming potential values depend on KCl concentration, they decrease as KCl concentration increases, and the value obtained by extrapolation to zero KCl concentration is 0.85 mV/osmol per kg. Assuming that water and ions cannot pass each other, at least in a region of the channel, the streaming potential values obtained indicate that this region contains a minimum of two and a maximum of four water molecules. It is concluded that the channel has a narrow region with a length of 0.6-1.2 nm.

摘要

测量了整合到平面脂质双分子层中的大电导钙激活钾通道产生的流动电位。使用了从骨骼肌或平滑肌膜获得的钙激活通道。流动电位是从在存在渗透梯度的情况下获得的开放通道的电流-电压关系中提取的。通过向膜的一侧添加葡萄糖来建立渗透梯度。在300 mM KCl时,横小管通道的平均流动电位为0.72 mV/每千克渗透摩尔,平滑肌通道为0.83 mV/每千克渗透摩尔。流动电位值取决于KCl浓度,随着KCl浓度的增加而降低,外推到零KCl浓度时得到的值为0.85 mV/每千克渗透摩尔。假设水和离子至少在通道的一个区域内不能相互通过,所获得的流动电位值表明该区域至少包含两个且最多四个水分子。得出的结论是,该通道有一个长度为0.6 - 1.2 nm的狭窄区域。

相似文献

引用本文的文献

7
High-Resolution Structures of K Channels.K 通道的高分辨率结构。
Handb Exp Pharmacol. 2021;267:51-81. doi: 10.1007/164_2021_454.
8
Selectivity filter ion binding affinity determines inactivation in a potassium channel.选择性过滤器离子结合亲和力决定钾通道失活。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29968-29978. doi: 10.1073/pnas.2009624117. Epub 2020 Nov 5.
9
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.纳米孔和生物通道中的水:分子模拟视角。
Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25.
10
Ion permeation in potassium ion channels.钾离子通道中的离子渗透。
Acta Crystallogr D Struct Biol. 2020 Apr 1;76(Pt 4):326-331. doi: 10.1107/S2059798320003599.

本文引用的文献

4
Conduction and selectivity in potassium channels.钾通道中的传导与选择性
J Membr Biol. 1983;71(1-2):11-30. doi: 10.1007/BF01870671.
5
Probing the pore size of the hemocyanin channel.探究血蓝蛋白通道的孔径。
Biochim Biophys Acta. 1982 Dec 8;693(1):173-6. doi: 10.1016/0005-2736(82)90484-9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验