Suppr超能文献

用于构建生物杂交组织致动器的基于排列碳纳米管的柔性凝胶基板。

Aligned carbon nanotube-based flexible gel substrates for engineering bio-hybrid tissue actuators.

作者信息

Shin Su Ryon, Shin Courtney, Memic Adnan, Shadmehr Samaneh, Miscuglio Mario, Jung Hyun Young, Jung Sung Mi, Bae Hojae, Khademhosseini Ali, Tang Xiaowu Shirley, Dokmeci Mehmet R

机构信息

Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Adv Funct Mater. 2015 Jul 20;25(28):4486-4495. doi: 10.1002/adfm.201501379. Epub 2015 Jun 12.

Abstract

Muscle-based biohybrid actuators have generated significant interest as the future of biorobotics but so far they move without having much control over their actuation behavior. Integration of microelectrodes into the backbone of these systems may enable guidance during their motion and allow precise control over these actuators with specific activation patterns. Here, we addressed this challenge by developing aligned CNT forest microelectrode arrays and incorporated them into scaffolds for stimulating the cells. Aligned CNTs were successfully embedded into flexible and biocompatible hydrogel exhibiting excellent anisotropic electrical conductivity. Bioactuators were then engineered by culturing cardiomyocytes on the CNT microelectrode-integrated hydrogel constructs. The resulting cardiac tissue showed homogeneous cell organization with improved cell-to-cell coupling and maturation, which was directly related to the contractile force of muscle tissue. This centimeter-scale bioactuator has excellent mechanical integrity, embedded microelectrodes and is capable of spontaneous actuation behavior. Furthermore, we demonstrated that a biohybrid machine can be controlled by an external electrical field provided by the integrated CNT microelectrode arrays. In addition, due to the anisotropic electrical conductivity of the electrodes provided from aligned CNTs, significantly different excitation thresholds were observed in different configurations such as the ones in parallel vs. perpendicular direction to the CNT alignment.

摘要

基于肌肉的生物混合致动器作为生物机器人技术的未来已引发了极大关注,但到目前为止,它们在运动时对其致动行为的控制能力还很有限。将微电极集成到这些系统的主干中,可能会在其运动过程中实现引导,并允许通过特定的激活模式对这些致动器进行精确控制。在此,我们通过开发排列整齐的碳纳米管森林微电极阵列来应对这一挑战,并将其整合到用于刺激细胞的支架中。排列整齐的碳纳米管成功嵌入到具有优异各向异性导电性的柔性生物相容性水凝胶中。然后,通过在集成了碳纳米管微电极的水凝胶构建体上培养心肌细胞来制造生物致动器。由此产生的心脏组织显示出均匀的细胞组织,细胞间耦合和成熟度得到改善,这与肌肉组织的收缩力直接相关。这种厘米级的生物致动器具有出色的机械完整性、嵌入式微电极,并且能够自发地产生致动行为。此外,我们证明了一种生物混合机器可以由集成的碳纳米管微电极阵列提供的外部电场进行控制。此外,由于排列整齐的碳纳米管提供的电极具有各向异性导电性,在不同配置下,如与碳纳米管排列方向平行和垂直的配置中,观察到了显著不同的激发阈值。

相似文献

1
Aligned carbon nanotube-based flexible gel substrates for engineering bio-hybrid tissue actuators.
Adv Funct Mater. 2015 Jul 20;25(28):4486-4495. doi: 10.1002/adfm.201501379. Epub 2015 Jun 12.
2
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
ACS Nano. 2013 Mar 26;7(3):2369-80. doi: 10.1021/nn305559j. Epub 2013 Feb 22.
3
Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
Acta Biomater. 2017 Apr 1;52:81-91. doi: 10.1016/j.actbio.2016.12.009. Epub 2016 Dec 8.
4
UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
Tissue Eng Part C Methods. 2018 Feb;24(2):74-88. doi: 10.1089/ten.TEC.2017.0346. Epub 2017 Nov 30.
5
Electrically Driven Microengineered Bioinspired Soft Robots.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201704189. Epub 2018 Jan 11.
6
Bioinspired Soft Robot with Incorporated Microelectrodes.
J Vis Exp. 2020 Feb 28(156). doi: 10.3791/60717.
9
Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs.
Int J Nanomedicine. 2017 Apr 13;12:3109-3120. doi: 10.2147/IJN.S128030. eCollection 2017.
10
Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
Acta Biomater. 2016 Sep 1;41:133-46. doi: 10.1016/j.actbio.2016.05.027. Epub 2016 May 20.

引用本文的文献

1
Micropatterning Photoconductive Peptide Assemblies on Stiff and Soft Biomaterial Substrates.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):31982-31992. doi: 10.1021/acsami.5c05693. Epub 2025 May 20.
2
Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications.
Biophys Rev (Melville). 2025 Feb 12;6(1):011304. doi: 10.1063/5.0246194. eCollection 2025 Mar.
4
Self-healing hydrogels for bone defect repair.
RSC Adv. 2023 Jun 5;13(25):16773-16788. doi: 10.1039/d3ra01700a.
5
Nanocomposite Hydrogels as Functional Extracellular Matrices.
Gels. 2023 Feb 13;9(2):153. doi: 10.3390/gels9020153.
6
Recent Advances in Nanomaterials of Group XIV Elements of Periodic Table in Breast Cancer Treatment.
Pharmaceutics. 2022 Nov 29;14(12):2640. doi: 10.3390/pharmaceutics14122640.
7
Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties.
Adv Funct Mater. 2022 Aug 1;32(31). doi: 10.1002/adfm.202202674. Epub 2022 May 3.
8
Actuators for Implantable Devices: A Broad View.
Micromachines (Basel). 2022 Oct 17;13(10):1756. doi: 10.3390/mi13101756.

本文引用的文献

1
Layer-by-layer assembly of 3D tissue constructs with functionalized graphene.
Adv Funct Mater. 2014 Oct 22;24(39):6136-6144. doi: 10.1002/adfm.201401300.
2
Three-dimensionally printed biological machines powered by skeletal muscle.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10125-30. doi: 10.1073/pnas.1401577111. Epub 2014 Jun 30.
4
A self-propelled biohybrid swimmer at low Reynolds number.
Nat Commun. 2014;5:3081. doi: 10.1038/ncomms4081.
5
Atmospheric-operable bioactuator powered by insect muscle packaged with medium.
Lab Chip. 2013 Dec 21;13(24):4870-80. doi: 10.1039/c3lc50490e.
6
Fabrication of three-dimensional carbon nanotube and metal oxide hybrid mesoporous architectures.
ACS Nano. 2013 May 28;7(5):4281-8. doi: 10.1021/nn400768p. Epub 2013 Apr 9.
7
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
ACS Nano. 2013 Mar 26;7(3):2369-80. doi: 10.1021/nn305559j. Epub 2013 Feb 22.
8
Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects.
Front Neural Circuits. 2013 Jan 9;6:122. doi: 10.3389/fncir.2012.00122. eCollection 2012.
9
Development of miniaturized walking biological machines.
Sci Rep. 2012;2:857. doi: 10.1038/srep00857. Epub 2012 Nov 15.
10
Formation and optogenetic control of engineered 3D skeletal muscle bioactuators.
Lab Chip. 2012 Dec 7;12(23):4976-85. doi: 10.1039/c2lc40338b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验