Suppr超能文献

集成微电极的仿生软机器人。

Bioinspired Soft Robot with Incorporated Microelectrodes.

作者信息

Wang Ting, Migliori Bianca, Miccoli Beatrice, Shin Su Ryon

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School; School of Medicine, Jiangsu University.

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School; Tech4Health and Neuroscience Institutes, NYU Langone Health.

出版信息

J Vis Exp. 2020 Feb 28(156). doi: 10.3791/60717.

Abstract

Bioinspired soft robotic systems that mimic living organisms using engineered muscle tissue and biomaterials are revolutionizing the current biorobotics paradigm, especially in biomedical research. Recreating artificial life-like actuation dynamics is crucial for a soft-robotic system. However, the precise control and tuning of actuation behavior still represents one of the main challenges of modern soft robotic systems. This method describes a low-cost, highly scalable, and easy-to-use procedure to fabricate an electrically controllable soft robot with life-like movements that is activated and controlled by the contraction of cardiac muscle tissue on a micropatterned sting ray-like hydrogel scaffold. The use of soft photolithography methods makes it possible to successfully integrate multiple components in the soft robotic system, including micropatterned hydrogel-based scaffolds with carbon nanotubes (CNTs) embedded gelatin methacryloyl (CNT-GelMA), poly(ethylene glycol) diacrylate (PEGDA), flexible gold (Au) microelectrodes, and cardiac muscle tissue. In particular, the hydrogels alignment and micropattern are designed to mimic the muscle and cartilage structure of the sting ray. The electrically conductive CNT-GelMA hydrogel acts as a cell scaffold that improves the maturation and contraction behavior of cardiomyocytes, while the mechanically robust PEGDA hydrogel provides structural cartilage-like support to the whole soft robot. To overcome the hard and brittle nature of metal-based microelectrodes, we designed a serpentine pattern that has high flexibility and can avoid hampering the beating dynamics of cardiomyocytes. The incorporated flexible Au microelectrodes provide electrical stimulation across the soft robot, making it easier to control the contraction behavior of cardiac tissue.

摘要

受生物启发的软机器人系统利用工程肌肉组织和生物材料模仿生物体,正在彻底改变当前的生物机器人范式,尤其是在生物医学研究领域。重现类似人工生命的驱动动力学对于软机器人系统至关重要。然而,驱动行为的精确控制和调节仍然是现代软机器人系统的主要挑战之一。本文介绍了一种低成本、高可扩展性且易于使用的方法,用于制造一种具有逼真运动的电控软机器人,该机器人由微图案化的 sting ray 状水凝胶支架上的心肌组织收缩来激活和控制。使用软光刻方法能够成功地将多个组件集成到软机器人系统中,包括嵌入碳纳米管(CNT)的明胶甲基丙烯酰基(CNT-GelMA)的微图案化水凝胶基支架、聚(乙二醇)二丙烯酸酯(PEGDA)、柔性金(Au)微电极和心肌组织。特别地,水凝胶的排列和微图案设计用于模仿 sting ray 的肌肉和软骨结构。导电的 CNT-GelMA 水凝胶充当细胞支架,可改善心肌细胞的成熟和收缩行为,而机械强度高的 PEGDA 水凝胶为整个软机器人提供类似软骨的结构支撑。为了克服金属基微电极坚硬易碎的特性,我们设计了一种具有高柔韧性且可避免妨碍心肌细胞跳动动力学的蛇形图案。集成的柔性 Au 微电极在整个软机器人上提供电刺激,从而更易于控制心脏组织的收缩行为。

相似文献

2
Electrically Driven Microengineered Bioinspired Soft Robots.电驱动微工程仿生软机器人。
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201704189. Epub 2018 Jan 11.
10
Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.用于生物电极界面的电活性 SWNT/PEGDA 杂化水凝胶涂层。
Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):273-9. doi: 10.1016/j.colsurfb.2011.05.028. Epub 2011 May 23.

引用本文的文献

1
Stimuli-responsive hybrid materials for 4D tissue models.用于4D组织模型的刺激响应性杂化材料。
Mater Today Bio. 2025 Jul 2;33:102035. doi: 10.1016/j.mtbio.2025.102035. eCollection 2025 Aug.

本文引用的文献

2
Electrically Driven Microengineered Bioinspired Soft Robots.电驱动微工程仿生软机器人。
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201704189. Epub 2018 Jan 11.
6
Design, fabrication and control of soft robots.软机器人的设计、制造与控制。
Nature. 2015 May 28;521(7553):467-75. doi: 10.1038/nature14543.
7
Development of a sperm-flagella driven micro-bio-robot.精子鞭毛驱动的微型生物机器人的研制。
Adv Mater. 2013 Dec 3;25(45):6581-8. doi: 10.1002/adma.201302544. Epub 2013 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验