Suppr超能文献

霍乱毒素B修饰的介孔二氧化硅纳米颗粒的细胞内吞作用与转运

Cellular Endocytosis and Trafficking of Cholera Toxin B-Modified Mesoporous Silica Nanoparticles.

作者信息

Walker William A, Tarannum Mubin, Vivero-Escoto Juan L

机构信息

Department of Chemistry, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A.; The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A.

The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A.; Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A.

出版信息

J Mater Chem B. 2016 Feb 21;4(7):1254-1262. doi: 10.1039/C5TB02079D. Epub 2016 Jan 7.

Abstract

In this study, mesoporous silica nanoparticles (MSNs) were functionalized with Cholera toxin subunit B (CTxB) protein to influence their intracellular trafficking pathways. The CTxB-MSN carrier was synthesized, and its chemical and structural properties were characterized. Endocytic pathway inhibition assays showed that the uptake of CTxB-MSNs in human cervical cancer (HeLa) cells was partially facilitated by both chlatrin- and caveolae-mediated endocytosis mechanisms. Laser scanning confocal microscopy (LSCM) experiments demonstrated that CTxB-MSNs were taken up by the cells and partially trafficked through the trans-Golgi network into to the endoplasmic reticulum in a retrograde fashion. The delivery abilities of CTxB-MSNs were evaluated using propidium iodide, an impermeable cell membrane dye. LSCM images depicted the release of propidium iodide in the endoplasmic reticulum and cell nucleus of HeLa cells.

摘要

在本研究中,用霍乱毒素B亚基(CTxB)蛋白对介孔二氧化硅纳米颗粒(MSNs)进行功能化修饰,以影响其细胞内运输途径。合成了CTxB-MSN载体,并对其化学和结构性质进行了表征。内吞途径抑制试验表明,网格蛋白介导和小窝介导的内吞机制均部分促进了人宫颈癌(HeLa)细胞对CTxB-MSNs的摄取。激光扫描共聚焦显微镜(LSCM)实验表明,CTxB-MSNs被细胞摄取,并部分通过反式高尔基体网络逆行运输到内质网中。使用碘化丙啶(一种不能透过细胞膜的染料)评估了CTxB-MSNs的递送能力。LSCM图像描绘了HeLa细胞内质网和细胞核中碘化丙啶的释放情况。

相似文献

1
Cellular Endocytosis and Trafficking of Cholera Toxin B-Modified Mesoporous Silica Nanoparticles.
J Mater Chem B. 2016 Feb 21;4(7):1254-1262. doi: 10.1039/C5TB02079D. Epub 2016 Jan 7.
2
The Functions of Cholera Toxin Subunit B as a Modulator of Silica Nanoparticle Endocytosis.
Toxins (Basel). 2023 Jul 29;15(8):482. doi: 10.3390/toxins15080482.
4
Lipid surface modifications increase mesoporous silica nanoparticle labeling properties in mesenchymal stem cells.
Int J Nanomedicine. 2018 Nov 20;13:7711-7725. doi: 10.2147/IJN.S182428. eCollection 2018.
5
Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin.
Colloids Surf B Biointerfaces. 2016 Aug 1;144:293-302. doi: 10.1016/j.colsurfb.2016.04.015. Epub 2016 Apr 8.
8
Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles.
Acta Biomater. 2017 Mar 15;51:471-478. doi: 10.1016/j.actbio.2017.01.062. Epub 2017 Jan 25.
9
PEG-templated mesoporous silica nanoparticles exclusively target cancer cells.
Nanoscale. 2011 Aug;3(8):3198-207. doi: 10.1039/c1nr10253b. Epub 2011 Jul 4.

引用本文的文献

2
Recent Applications of Mesoporous Silica Nanoparticles in Gene Therapy.
Adv Healthc Mater. 2025 Feb 10:e2404781. doi: 10.1002/adhm.202404781.
4
Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions.
Adv Healthc Mater. 2024 Aug;13(20):e2400323. doi: 10.1002/adhm.202400323. Epub 2024 May 3.
5
The Mutagenic Plasticity of the Cholera Toxin B-Subunit Surface Residues: Stability and Affinity.
Toxins (Basel). 2024 Mar 4;16(3):133. doi: 10.3390/toxins16030133.
6
The Functions of Cholera Toxin Subunit B as a Modulator of Silica Nanoparticle Endocytosis.
Toxins (Basel). 2023 Jul 29;15(8):482. doi: 10.3390/toxins15080482.
7
AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy.
Int J Mol Sci. 2023 Jul 7;24(13):11227. doi: 10.3390/ijms241311227.
10

本文引用的文献

1
Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery.
Chemistry. 2015 Sep 28;21(40):13850-65. doi: 10.1002/chem.201500578. Epub 2015 Aug 6.
2
Endosomal escape: a bottleneck in intracellular delivery.
J Nanosci Nanotechnol. 2014 Jan;14(1):460-74. doi: 10.1166/jnn.2014.9082.
3
Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape.
Nat Biotechnol. 2013 Jul;31(7):638-46. doi: 10.1038/nbt.2612. Epub 2013 Jun 23.
4
In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles.
Adv Mater. 2013 Jun 18;25(23):3144-76. doi: 10.1002/adma.201205292. Epub 2013 May 17.
5
Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells.
Talanta. 2013 Mar 30;107:408-15. doi: 10.1016/j.talanta.2013.01.037. Epub 2013 Jan 29.
6
Reversible assembly of stacked membrane nanodiscs with reduced dimensionality and variable periodicity.
J Am Chem Soc. 2013 Mar 6;135(9):3335-8. doi: 10.1021/ja311561d. Epub 2013 Feb 22.
8
Mesoporous silica nanoparticles in nanotechnology.
Crit Rev Biotechnol. 2013 Sep;33(3):229-45. doi: 10.3109/07388551.2012.685860. Epub 2012 Jun 25.
9
Silica-based nanoprobes for biomedical imaging and theranostic applications.
Chem Soc Rev. 2012 Apr 7;41(7):2673-85. doi: 10.1039/c2cs15229k. Epub 2012 Jan 10.
10
Identification of host cell factors required for intoxication through use of modified cholera toxin.
J Cell Biol. 2011 Nov 28;195(5):751-64. doi: 10.1083/jcb.201108103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验