Suppr超能文献

三维打印流体装置中裸石墨电极和DNA涂层石墨电极上的电化学发光

Electrochemiluminescence at Bare and DNA-Coated Graphite Electrodes in 3D-Printed Fluidic Devices.

作者信息

Bishop Gregory W, Satterwhite-Warden Jennifer E, Bist Itti, Chen Eric, Rusling James F

机构信息

Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States.

Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States; Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States; School of Chemistry, National University of Ireland at Galway, Galway, Ireland.

出版信息

ACS Sens. 2016;1(2):197-202. doi: 10.1021/acssensors.5b00156. Epub 2015 Dec 17.

Abstract

Clear plastic fluidic devices with ports for incorporating electrodes to enable electrochemiluminescence (ECL) measurements were prepared using a low-cost, desktop three-dimensional (3D) printer based on stereolithography. Electrodes consisted of 0.5 mm pencil graphite rods and 0.5 mm silver wires inserted into commercially available 1/4 in.-28 threaded fittings. A bioimaging system equipped with a CCD camera was used to measure ECL generated at electrodes and small arrays using 0.2 M phosphate buffer solutions containing tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate ([Ru(bpy)]) with 100 mM tri--propylamine (TPA) as the coreactant. ECL signals produced at pencil graphite working electrodes were linear with respect to [Ru(bpy)] concentration for 9-900 μM [Ru(bpy)]. The detection limit was found to be 7 μM using the CCD camera with exposure time set at 10 s. Electrode-to-electrode ECL signals varied by ±7.5%. Device performance was further evaluated using pencil graphite electrodes coated with multilayer poly(diallyldimethylammonium chloride) (PDDA)/DNA films. In these experiments, ECL resulted from the reaction of [Ru(bpy)] with guanines of DNA. ECL produced at these thin-film electrodes was linear with respect to [Ru(bpy)] concentration from 180 to 800 μM. These studies provide the first demonstration of ECL measurements obtained using a 3D-printed closed-channel fluidic device platform. The affordable, high-resolution 3D printer used in these studies enables easy, fast, and adaptable prototyping of fluidic devices capable of incorporating electrodes for measuring ECL.

摘要

使用基于立体光刻的低成本桌面三维(3D)打印机,制备了带有用于插入电极以实现电化学发光(ECL)测量端口的透明塑料流体装置。电极由插入市售1/4英寸-28螺纹配件中的0.5毫米铅笔石墨棒和0.5毫米银线组成。使用配备电荷耦合器件(CCD)相机的生物成像系统,以含有六水合三(2,2'-联吡啶)二氯钌(II)([Ru(bpy)])和100 mM三丙胺(TPA)作为共反应剂的0.2 M磷酸盐缓冲溶液,测量电极和小阵列处产生的ECL。对于9 - 900 μM [Ru(bpy)],铅笔石墨工作电极处产生的ECL信号与[Ru(bpy)]浓度呈线性关系。当CCD相机曝光时间设置为10 s时,检测限为7 μM。电极间的ECL信号变化±7.5%。使用涂覆有多层聚二烯丙基二甲基氯化铵(PDDA)/DNA膜的铅笔石墨电极进一步评估器件性能。在这些实验中,ECL源于[Ru(bpy)]与DNA鸟嘌呤的反应。这些薄膜电极处产生的ECL与180至800 μM的[Ru(bpy)]浓度呈线性关系。这些研究首次展示了使用3D打印的封闭通道流体装置平台获得的ECL测量结果。这些研究中使用的价格实惠、高分辨率的3D打印机能够轻松、快速且灵活地对能够集成用于测量ECL电极的流体装置进行原型制作。

相似文献

1
Electrochemiluminescence at Bare and DNA-Coated Graphite Electrodes in 3D-Printed Fluidic Devices.
ACS Sens. 2016;1(2):197-202. doi: 10.1021/acssensors.5b00156. Epub 2015 Dec 17.
2
Two orders-of-magnitude enhancement in the electrochemiluminescence of Ru(bpy)₃²⁺ by vertically ordered silica mesochannels.
Anal Chim Acta. 2015 Jul 30;886:48-55. doi: 10.1016/j.aca.2015.06.005. Epub 2015 Jul 6.
4
Electrochemiluminescence from tris(2,2'-bipyridyl)ruthenium(II)-graphene-Nafion modified electrode.
Talanta. 2009 Jul 15;79(2):165-70. doi: 10.1016/j.talanta.2009.03.020. Epub 2009 Mar 21.
7
Electrochemiluminescence detection in microfluidic cloth-based analytical devices.
Biosens Bioelectron. 2016 Jan 15;75:247-53. doi: 10.1016/j.bios.2015.08.023. Epub 2015 Aug 14.
8
Using stannous ion as an excellent inorganic ECL coreactant for tris(2,2'-bipyridyl) ruthenium(II).
Dalton Trans. 2012 Feb 7;41(5):1630-4. doi: 10.1039/c1dt11415h. Epub 2011 Dec 7.
9
Boron Nitride Quantum Dots as Efficient Coreactant for Enhanced Electrochemiluminescence of Ruthenium(II) Tris(2,2'-bipyridyl).
Anal Chem. 2018 Feb 6;90(3):2141-2147. doi: 10.1021/acs.analchem.7b04428. Epub 2018 Jan 12.

引用本文的文献

1
Organ-on-a-Chip Applications in Microfluidic Platforms.
Micromachines (Basel). 2025 Feb 10;16(2):201. doi: 10.3390/mi16020201.
2
3D printed microfluidic devices with electrodes for electrochemical analysis.
Anal Methods. 2024 Oct 24;16(41):6941-6953. doi: 10.1039/d4ay01701c.
3
Three-Dimensional Printing and Its Potential to Develop Sensors for Cancer with Improved Performance.
Biosensors (Basel). 2022 Aug 26;12(9):685. doi: 10.3390/bios12090685.
4
A Review on Additive Manufacturing of Micromixing Devices.
Micromachines (Basel). 2021 Dec 31;13(1):73. doi: 10.3390/mi13010073.
6
Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
Micromachines (Basel). 2021 Mar 22;12(3):339. doi: 10.3390/mi12030339.
8
3D-printed miniaturized fluidic tools in chemistry and biology.
Trends Analyt Chem. 2018 Sep;106:37-52. doi: 10.1016/j.trac.2018.06.013. Epub 2018 Jul 5.
9
Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices.
Analyst. 2020 May 7;145(9):3274-3282. doi: 10.1039/d0an00240b. Epub 2020 Apr 3.
10
3D Printed Microfluidics.
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.

本文引用的文献

1
Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices.
Adv Sci (Weinh). 2015 Jul 16;2(9):1500125. doi: 10.1002/advs.201500125. eCollection 2015 Sep.
2
3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray.
Biosens Bioelectron. 2016 Mar 15;77:188-93. doi: 10.1016/j.bios.2015.09.017. Epub 2015 Sep 11.
4
Additive manufacturing. Continuous liquid interface production of 3D objects.
Science. 2015 Mar 20;347(6228):1349-52. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16.
5
3D-printed microfluidic automation.
Lab Chip. 2015 Apr 21;15(8):1934-41. doi: 10.1039/c5lc00126a.
6
3D printed microfluidic devices with integrated valves.
Biomicrofluidics. 2015 Jan 13;9(1):016501. doi: 10.1063/1.4905840. eCollection 2015 Jan.
7
Discrete elements for 3D microfluidics.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8. doi: 10.1073/pnas.1414764111. Epub 2014 Sep 22.
8
Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
Lab Chip. 2014 Aug 21;14(16):2978-82. doi: 10.1039/c4lc00394b.
9
3D printed microfluidic devices with integrated versatile and reusable electrodes.
Lab Chip. 2014 Jun 21;14(12):2023-32. doi: 10.1039/c4lc00171k. Epub 2014 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验