Bevers Loes E, Theil Elizabeth C
Council for BioIron, CHORI (Children's Hospital Oakland Research Institute), Oakland, CA, USA.
Prog Mol Subcell Biol. 2011;52:29-47. doi: 10.1007/978-3-642-21230-7_2.
Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.
铁蛋白合成三氧化二铁生物矿物,对于所有生命集中铁元素以及抵御亚铁和氧化剂化学反应产生的氧化应激至关重要。本文从大型铁蛋白(24个亚基±血红素)和小型铁蛋白(Dps)(12个亚基)的广泛生物分布、蛋白笼中铁/氧催化位点的保守性、矿物形成过程(步骤i. Fe(II)进入与结合;步骤ii. O(2)或H(2)O(2)结合及过渡中间体形成;步骤iii. 活性位点释放不同的氧代矿物前体;步骤iv. 成核与矿化)、矿物性质以及蛋白对矿物溶解和Fe(II)释放的控制等方面,讨论了铁蛋白蛋白质纳米笼和生物矿物合成。铁蛋白蛋白质笼中的孔控制着矿化时铁的进入以及矿物溶解后铁的排出。基于有关铁蛋白蛋白质笼结构对蛋白质笼亚基通道成核作用的新信息,阐述了磷酸盐或催化无活性亚基(动物L亚基)的存在与铁蛋白铁矿物紊乱之间的关系,这些通道与其他亚基的通道足够接近,且矿物核由此排出以促进大量矿物形成。在矿物合成和溶解过程中质子如何以及在何处进出蛋白质、具有12或24个亚基的铁蛋白笼组装如何在差异很大的铁蛋白氨基酸序列中编码,以及该蛋白质在大量矿物合成中的作用,均被描述为未来铁蛋白生物矿物研究中需要新方法解决的问题。