Suppr超能文献

用于癌症免疫治疗的T细胞基因工程策略。

Strategies to genetically engineer T cells for cancer immunotherapy.

作者信息

Spear Timothy T, Nagato Kaoru, Nishimura Michael I

机构信息

Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.

Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.

出版信息

Cancer Immunol Immunother. 2016 Jun;65(6):631-49. doi: 10.1007/s00262-016-1842-5. Epub 2016 May 2.

Abstract

Immunotherapy is one of the most promising and innovative approaches to treat cancer, viral infections, and other immune-modulated diseases. Adoptive immunotherapy using gene-modified T cells is an exciting and rapidly evolving field. Exploiting knowledge of basic T cell biology and immune cell receptor function has fostered innovative approaches to modify immune cell function. Highly translatable clinical technologies have been developed to redirect T cell specificity by introducing designed receptors. The ability to engineer T cells to manifest desired phenotypes and functions is now a thrilling reality. In this review, we focus on outlining different varieties of genetically engineered T cells, their respective advantages and disadvantages as tools for immunotherapy, and their promise and drawbacks in the clinic.

摘要

免疫疗法是治疗癌症、病毒感染及其他免疫调节疾病最具前景和创新性的方法之一。使用基因改造T细胞的过继性免疫疗法是一个令人兴奋且发展迅速的领域。利用基础T细胞生物学和免疫细胞受体功能的知识催生了改变免疫细胞功能的创新方法。通过引入设计好的受体来重新定向T细胞特异性,已经开发出了具有高度可转化性的临床技术。如今,将T细胞改造以展现出所需表型和功能的能力已成为令人激动的现实。在本综述中,我们着重概述基因工程改造T细胞的不同种类、它们作为免疫治疗工具各自的优缺点,以及它们在临床上的前景和不足。

相似文献

1
Strategies to genetically engineer T cells for cancer immunotherapy.
Cancer Immunol Immunother. 2016 Jun;65(6):631-49. doi: 10.1007/s00262-016-1842-5. Epub 2016 May 2.
2
Chimeric antigen receptors in cancer immuno-gene therapy: current status and future directions.
Int Rev Immunol. 2011 Oct-Dec;30(5-6):294-311. doi: 10.3109/08830185.2011.595855.
3
Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.
Int Rev Immunol. 2015 Mar;34(2):154-87. doi: 10.3109/08830185.2015.1018419.
4
Spotlight on chimeric antigen receptor engineered T cell research and clinical trials in China.
Sci China Life Sci. 2016 Apr;59(4):349-59. doi: 10.1007/s11427-016-5034-5. Epub 2016 Mar 24.
5
Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects.
Sci China Life Sci. 2016 Apr;59(4):360-9. doi: 10.1007/s11427-016-5025-6. Epub 2016 Mar 11.
6
Establishing guidelines for CAR-T cells: challenges and considerations.
Sci China Life Sci. 2016 Apr;59(4):333-9. doi: 10.1007/s11427-016-5026-5. Epub 2016 Mar 11.
7
Chimeric antigen receptor T cell therapy: 25years in the making.
Blood Rev. 2016 May;30(3):157-67. doi: 10.1016/j.blre.2015.10.003. Epub 2015 Nov 6.
8
Chimeric Antigen Receptor T Cell Therapy in Hematology.
Turk J Haematol. 2015 Dec;32(4):285-94. doi: 10.4274/tjh.2015.0049. Epub 2015 Aug 6.
9
Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.
Sci China Life Sci. 2016 Apr;59(4):340-8. doi: 10.1007/s11427-016-5027-4. Epub 2016 Mar 11.
10
T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition.
Cancer Immunol Res. 2015 Oct;3(10):1115-22. doi: 10.1158/2326-6066.CIR-15-0190.

引用本文的文献

1
Editorial: Enhancing T cell function: innovations in cancer immunotherapy.
Front Immunol. 2025 May 6;16:1615030. doi: 10.3389/fimmu.2025.1615030. eCollection 2025.
2
Immuno-oncological Challenges and Chemoresistance in Veterinary Medicine: Probiotics as a New Strategic Tool.
Probiotics Antimicrob Proteins. 2025 Feb 15. doi: 10.1007/s12602-025-10468-8.
3
Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy.
Nanomicro Lett. 2024 Sep 30;17(1):30. doi: 10.1007/s40820-024-01533-y.
4
Identification of MHC Displayed Tumor Associated Peptides in Ovarian Cancer for Multi-Epitope Vaccine Construct.
Endocr Metab Immune Disord Drug Targets. 2024;24(12):1401-1413. doi: 10.2174/0118715303169428231205173914.
5
Artificial Intelligence in Regenerative Medicine: Applications and Implications.
Biomimetics (Basel). 2023 Sep 20;8(5):442. doi: 10.3390/biomimetics8050442.
6
Genetically engineered cellular nanoparticles for biomedical applications.
Biomaterials. 2023 May;296:122065. doi: 10.1016/j.biomaterials.2023.122065. Epub 2023 Feb 20.
7
Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects.
Vaccines (Basel). 2022 Nov 25;10(12):2011. doi: 10.3390/vaccines10122011.
8
Development of Peptide-Based Vaccines for Cancer.
J Oncol. 2022 Mar 15;2022:9749363. doi: 10.1155/2022/9749363. eCollection 2022.
9
Genetic Modification of T Cells for the Immunotherapy of Cancer.
Vaccines (Basel). 2022 Mar 16;10(3):457. doi: 10.3390/vaccines10030457.
10
A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast cancer immunotherapy.
Chem Sci. 2021 Nov 25;13(1):105-110. doi: 10.1039/d1sc03525h. eCollection 2021 Dec 22.

本文引用的文献

1
Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability.
J Leukoc Biol. 2016 Sep;100(3):545-57. doi: 10.1189/jlb.2A1215-561R. Epub 2016 Feb 26.
2
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy.
Blood. 2016 May 19;127(20):2406-10. doi: 10.1182/blood-2015-08-665547. Epub 2016 Feb 23.
3
TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors.
Cancer Immunol Immunother. 2016 Mar;65(3):293-304. doi: 10.1007/s00262-016-1800-2. Epub 2016 Feb 3.
4
Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone.
Cancer Immunol Immunother. 2015 Dec;64(12):1623-35. doi: 10.1007/s00262-015-1767-4. Epub 2015 Oct 29.
7
Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T.
Cancer Immunol Immunother. 2015 Jul;64(7):817-29. doi: 10.1007/s00262-015-1692-6. Epub 2015 Apr 8.
9
Human Leukocyte Antigen (HLA) A*1101-Restricted Epstein-Barr Virus-Specific T-cell Receptor Gene Transfer to Target Nasopharyngeal Carcinoma.
Cancer Immunol Res. 2015 Oct;3(10):1138-47. doi: 10.1158/2326-6066.CIR-14-0203-T. Epub 2015 Feb 24.
10
Overcoming the toxicity hurdles of genetically targeted T cells.
Cancer Immunol Immunother. 2015 Jan;64(1):123-30. doi: 10.1007/s00262-014-1641-9. Epub 2014 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验