Liu Yang, Blanchfield Lori, Ma Victor Pui-Yan, Andargachew Rakieb, Galior Kornelia, Liu Zheng, Evavold Brian, Salaita Khalid
Department of Chemistry, Emory University, Atlanta, GA 30322;
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322;
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5610-5. doi: 10.1073/pnas.1600163113. Epub 2016 May 2.
T cells are triggered when the T-cell receptor (TCR) encounters its antigenic ligand, the peptide-major histocompatibility complex (pMHC), on the surface of antigen presenting cells (APCs). Because T cells are highly migratory and antigen recognition occurs at an intermembrane junction where the T cell physically contacts the APC, there are long-standing questions of whether T cells transmit defined forces to their TCR complex and whether chemomechanical coupling influences immune function. Here we develop DNA-based gold nanoparticle tension sensors to provide, to our knowledge, the first pN tension maps of individual TCR-pMHC complexes during T-cell activation. We show that naïve T cells harness cytoskeletal coupling to transmit 12-19 pN of force to their TCRs within seconds of ligand binding and preceding initial calcium signaling. CD8 coreceptor binding and lymphocyte-specific kinase signaling are required for antigen-mediated cell spreading and force generation. Lymphocyte function-associated antigen 1 (LFA-1) mediated adhesion modulates TCR-pMHC tension by intensifying its magnitude to values >19 pN and spatially reorganizes the location of TCR forces to the kinapse, the zone located at the trailing edge of migrating T cells, thus demonstrating chemomechanical crosstalk between TCR and LFA-1 receptor signaling. Finally, T cells display a dampened and poorly specific response to antigen agonists when TCR forces are chemically abolished or physically "filtered" to a level below ∼12 pN using mechanically labile DNA tethers. Therefore, we conclude that T cells tune TCR mechanics with pN resolution to create a checkpoint of agonist quality necessary for specific immune response.
当T细胞受体(TCR)在抗原呈递细胞(APC)表面遇到其抗原配体,即肽-主要组织相容性复合体(pMHC)时,T细胞就会被激活。由于T细胞具有高度迁移性,且抗原识别发生在T细胞与APC发生物理接触的膜间连接处,因此长期以来一直存在这样的问题:T细胞是否会向其TCR复合体传递特定的力,以及化学机械偶联是否会影响免疫功能。在此,我们开发了基于DNA的金纳米颗粒张力传感器,据我们所知,这是首次在T细胞激活过程中获得单个TCR-pMHC复合体的皮牛顿(pN)张力图谱。我们发现,初始T细胞利用细胞骨架偶联在配体结合后数秒内且在初始钙信号传导之前,向其TCR传递12-19 pN的力。抗原介导的细胞铺展和力的产生需要CD8共受体结合和淋巴细胞特异性激酶信号传导。淋巴细胞功能相关抗原1(LFA-1)介导的黏附通过将TCR-pMHC张力强度增强至>19 pN来调节其张力,并在空间上重新组织TCR力的位置至kinapse,即位于迁移T细胞后缘的区域,从而证明了TCR与LFA-1受体信号传导之间的化学机械串扰。最后,当使用机械不稳定的DNA系链将TCR力化学消除或物理“过滤”至低于约12 pN的水平时,T细胞对抗原激动剂的反应减弱且特异性降低。因此,我们得出结论,T细胞以皮牛顿分辨率调节TCR力学,以创建特异性免疫反应所需的激动剂质量检查点。