Suppr超能文献

TP53 通路的肿瘤抑制功能

Tumor-Suppressor Functions of the TP53 Pathway.

作者信息

Aubrey Brandon J, Strasser Andreas, Kelly Gemma L

机构信息

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.

出版信息

Cold Spring Harb Perspect Med. 2016 May 2;6(5):a026062. doi: 10.1101/cshperspect.a026062.

Abstract

The fundamental biological importance of the Tp53 gene family is highlighted by its evolutionary conservation for more than one billion years dating back to the earliest multicellular organisms. The TP53 protein provides essential functions in the cellular response to diverse stresses and safeguards maintenance of genomic integrity, and this is manifest in its critical role in tumor suppression. The importance of Tp53 in tumor prevention is exemplified in human cancer where it is the most frequently detected genetic alteration. This is confirmed in animal models, in which a defective Tp53 gene leads inexorably to cancer development, whereas reinstatement of TP53 function results in regression of established tumors that had been initiated by loss of TP53. Remarkably, despite extensive investigation, the specific mechanisms by which TP53 acts as a tumor suppressor are yet to be fully defined. We review the history and current standing of efforts to understand these mechanisms and how they complement each other in tumor suppression.

摘要

Tp53基因家族在生物学上的根本重要性体现在其自最早的多细胞生物以来超过十亿年的进化保守性上。TP53蛋白在细胞对多种应激的反应中发挥着重要作用,并保障基因组完整性的维持,这在其肿瘤抑制的关键作用中得以体现。Tp53在肿瘤预防中的重要性在人类癌症中得到了例证,它是最常检测到的基因改变。这在动物模型中得到了证实,在动物模型中,有缺陷的Tp53基因不可避免地导致癌症发展,而恢复TP53功能则会使由TP53缺失引发的已形成肿瘤消退。值得注意的是,尽管进行了广泛研究,但TP53作为肿瘤抑制因子发挥作用的具体机制尚未完全明确。我们回顾了理解这些机制的努力历程及其现状,以及它们在肿瘤抑制中如何相互补充。

相似文献

1
Tumor-Suppressor Functions of the TP53 Pathway.
Cold Spring Harb Perspect Med. 2016 May 2;6(5):a026062. doi: 10.1101/cshperspect.a026062.
2
Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting.
Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188556. doi: 10.1016/j.bbcan.2021.188556. Epub 2021 Apr 29.
3
The tumor suppressor gene TP53: implications for cancer management and therapy.
Crit Rev Clin Lab Sci. 2004;41(5-6):551-83. doi: 10.1080/10408360490504952.
4
Effects of TP53 mutational status on gene expression patterns across 10 human cancer types.
J Pathol. 2014 Apr;232(5):522-33. doi: 10.1002/path.4321. Epub 2014 Jan 29.
5
Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils.
Expert Opin Ther Targets. 2012 Jan;16(1):67-83. doi: 10.1517/14728222.2011.643299. Epub 2012 Jan 12.
6
Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis.
Adv Biol Regul. 2017 Jan;63:32-48. doi: 10.1016/j.jbior.2016.10.001. Epub 2016 Oct 6.
7
Translating p53 into the clinic.
Nat Rev Clin Oncol. 2011 Jan;8(1):25-37. doi: 10.1038/nrclinonc.2010.174. Epub 2010 Oct 26.
8
TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep).
Clin Cancer Res. 2012 Aug 1;18(15):4201-12. doi: 10.1158/1078-0432.CCR-12-0036. Epub 2012 Jun 6.
9
A degradative detour for mutant TP53.
Autophagy. 2013 Dec;9(12):2158-60. doi: 10.4161/auto.26338. Epub 2013 Sep 30.
10
The TP53 signaling network in mammals and worms.
Brief Funct Genomics. 2013 Mar;12(2):129-41. doi: 10.1093/bfgp/els047. Epub 2012 Nov 18.

引用本文的文献

1
The Good, the Bad, or Both? Unveiling the Molecular Functions of LINC01133 in Tumors.
Noncoding RNA. 2025 Jul 30;11(4):58. doi: 10.3390/ncrna11040058.
2
Integrative systems biology and in-vitro analysis of cryptolepine's therapeutic role in breast cancer.
Discov Oncol. 2025 Aug 11;16(1):1520. doi: 10.1007/s12672-025-03158-y.
3
Metastatic Pheochromocytoma in a Patient With Li-Fraumeni Syndrome.
JCEM Case Rep. 2025 Aug 1;3(9):luaf166. doi: 10.1210/jcemcr/luaf166. eCollection 2025 Sep.
8
Long non-coding RNA TMEM51-AS1 inhibits colorectal cancer progression.
Discov Oncol. 2025 May 23;16(1):878. doi: 10.1007/s12672-025-02676-z.

本文引用的文献

1
TP53 loss creates therapeutic vulnerability in colorectal cancer.
Nature. 2015 Apr 30;520(7549):697-701. doi: 10.1038/nature14418. Epub 2015 Apr 22.
2
Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage.
Nucleic Acids Res. 2015 May 19;43(9):4447-62. doi: 10.1093/nar/gkv284. Epub 2015 Apr 16.
3
Ferroptosis as a p53-mediated activity during tumour suppression.
Nature. 2015 Apr 2;520(7545):57-62. doi: 10.1038/nature14344. Epub 2015 Mar 18.
5
The evolution of thymic lymphomas in p53 knockout mice.
Genes Dev. 2014 Dec 1;28(23):2613-20. doi: 10.1101/gad.252148.114.
7
Cell competition is a tumour suppressor mechanism in the thymus.
Nature. 2014 May 22;509(7501):465-70. doi: 10.1038/nature13317. Epub 2014 May 14.
8
Unravelling mechanisms of p53-mediated tumour suppression.
Nat Rev Cancer. 2014 May;14(5):359-70. doi: 10.1038/nrc3711. Epub 2014 Apr 17.
9
Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome.
Hum Mutat. 2014 Jun;35(6):654-62. doi: 10.1002/humu.22559.
10
Understanding the non-canonical pathways involved in p53-mediated tumor suppression.
Carcinogenesis. 2014 Apr;35(4):740-6. doi: 10.1093/carcin/bgt487. Epub 2013 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验