Suppr超能文献

TAPAS:一个用于转化神经建模和计算精神病学的开源软件包。

TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry.

作者信息

Frässle Stefan, Aponte Eduardo A, Bollmann Saskia, Brodersen Kay H, Do Cao T, Harrison Olivia K, Harrison Samuel J, Heinzle Jakob, Iglesias Sandra, Kasper Lars, Lomakina Ekaterina I, Mathys Christoph, Müller-Schrader Matthias, Pereira Inês, Petzschner Frederike H, Raman Sudhir, Schöbi Dario, Toussaint Birte, Weber Lilian A, Yao Yu, Stephan Klaas E

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.

Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.

出版信息

Front Psychiatry. 2021 Jun 2;12:680811. doi: 10.3389/fpsyt.2021.680811. eCollection 2021.

Abstract

Psychiatry faces fundamental challenges with regard to mechanistically guided differential diagnosis, as well as prediction of clinical trajectories and treatment response of individual patients. This has motivated the genesis of two closely intertwined fields: (i) Translational Neuromodeling (TN), which develops "computational assays" for inferring patient-specific disease processes from neuroimaging, electrophysiological, and behavioral data; and (ii) Computational Psychiatry (CP), with the goal of incorporating computational assays into clinical decision making in everyday practice. In order to serve as objective and reliable tools for clinical routine, computational assays require end-to-end pipelines from raw data (input) to clinically useful information (output). While these are yet to be established in clinical practice, individual components of this general end-to-end pipeline are being developed and made openly available for community use. In this paper, we present the ranslational lgorithms for sychiatry-dvancing cience (TAPAS) software package, an open-source collection of building blocks for computational assays in psychiatry. Collectively, the tools in TAPAS presently cover several important aspects of the desired end-to-end pipeline, including: (i) tailored experimental designs and optimization of measurement strategy prior to data acquisition, (ii) quality control during data acquisition, and (iii) artifact correction, statistical inference, and clinical application after data acquisition. Here, we review the different tools within TAPAS and illustrate how these may help provide a deeper understanding of neural and cognitive mechanisms of disease, with the ultimate goal of establishing automatized pipelines for predictions about individual patients. We hope that the openly available tools in TAPAS will contribute to the further development of TN/CP and facilitate the translation of advances in computational neuroscience into clinically relevant computational assays.

摘要

精神病学在基于机制的鉴别诊断以及个体患者临床病程和治疗反应的预测方面面临着根本性挑战。这推动了两个紧密交织的领域的产生:(i)转化神经建模(TN),它开发“计算分析”方法,用于从神经影像、电生理和行为数据中推断患者特异性的疾病过程;(ii)计算精神病学(CP),其目标是将计算分析纳入日常临床决策中。为了作为临床常规中客观可靠的工具,计算分析需要从原始数据(输入)到临床有用信息(输出)的端到端流程。虽然这些流程在临床实践中尚未建立,但这个通用端到端流程的各个组件正在开发并向社区开放使用。在本文中,我们介绍了用于推进精神病学科学的转化算法(TAPAS)软件包,这是一个用于精神病学计算分析的开源构建模块集合。总体而言,TAPAS中的工具目前涵盖了所需端到端流程的几个重要方面,包括:(i)在数据采集之前进行量身定制的实验设计和测量策略优化,(ii)数据采集期间的质量控制,以及(iii)数据采集后的伪迹校正、统计推断和临床应用。在这里,我们回顾了TAPAS中的不同工具,并说明它们如何有助于更深入地理解疾病的神经和认知机制,最终目标是建立用于预测个体患者的自动化流程。我们希望TAPAS中公开可用的工具将有助于TN/CP的进一步发展,并促进计算神经科学的进展转化为临床相关的计算分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f191/8206497/bf033b1a8e37/fpsyt-12-680811-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验