Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland.
Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Department of Computer Science, ETH Zurich, 8032 Zurich, Switzerland.
Neuroimage. 2017 Jul 15;155:406-421. doi: 10.1016/j.neuroimage.2017.02.090. Epub 2017 Mar 1.
The development of large-scale network models that infer the effective (directed) connectivity among neuronal populations from neuroimaging data represents a key challenge for computational neuroscience. Dynamic causal models (DCMs) of neuroimaging and electrophysiological data are frequently used for inferring effective connectivity but are presently restricted to small graphs (typically up to 10 regions) in order to keep model inversion computationally feasible. Here, we present a novel variant of DCM for functional magnetic resonance imaging (fMRI) data that is suited to assess effective connectivity in large (whole-brain) networks. The approach rests on translating a linear DCM into the frequency domain and reformulating it as a special case of Bayesian linear regression. This paper derives regression DCM (rDCM) in detail and presents a variational Bayesian inversion method that enables extremely fast inference and accelerates model inversion by several orders of magnitude compared to classical DCM. Using both simulated and empirical data, we demonstrate the face validity of rDCM under different settings of signal-to-noise ratio (SNR) and repetition time (TR) of fMRI data. In particular, we assess the potential utility of rDCM as a tool for whole-brain connectomics by challenging it to infer effective connection strengths in a simulated whole-brain network comprising 66 regions and 300 free parameters. Our results indicate that rDCM represents a computationally highly efficient approach with promising potential for inferring whole-brain connectivity from individual fMRI data.
从神经影像学数据中推断神经元群体之间有效(有向)连接的大规模网络模型的发展是计算神经科学的一个关键挑战。神经影像学和电生理学数据的动态因果模型(DCM)常用于推断有效连接,但目前限于小图(通常最多 10 个区域),以便保持模型反演在计算上的可行性。在这里,我们提出了一种新的功能磁共振成像(fMRI)数据 DCM 变体,适用于评估大(全脑)网络中的有效连接。该方法基于将线性 DCM 转换到频域,并将其重新表述为贝叶斯线性回归的特例。本文详细推导了回归 DCM(rDCM),并提出了一种变分贝叶斯反演方法,与经典 DCM 相比,该方法能够实现极快的推断,并将模型反演速度提高几个数量级。我们使用模拟和真实数据,在不同的信噪比(SNR)和 fMRI 数据重复时间(TR)设置下,展示了 rDCM 的表面有效性。特别是,我们通过挑战 rDCM 来推断包含 66 个区域和 300 个自由参数的模拟全脑网络中的有效连接强度,评估了 rDCM 作为一种从单个 fMRI 数据推断全脑连接的工具的潜在效用。我们的结果表明,rDCM 代表了一种计算效率非常高的方法,具有从个体 fMRI 数据推断全脑连接的有前途的潜力。