Suppr超能文献

利用逆蒙特卡罗和随机森林回归从百万像素多光谱图像中进行稳健的生理参数近实时估计。

Robust near real-time estimation of physiological parameters from megapixel multispectral images with inverse Monte Carlo and random forest regression.

作者信息

Wirkert Sebastian J, Kenngott Hannes, Mayer Benjamin, Mietkowski Patrick, Wagner Martin, Sauer Peter, Clancy Neil T, Elson Daniel S, Maier-Hein Lena

机构信息

Computer-Assisted Interventions, German Cancer Research Center, Heidelberg, Germany.

Department for General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2016 Jun;11(6):909-17. doi: 10.1007/s11548-016-1376-5. Epub 2016 May 3.

Abstract

PURPOSE

Multispectral imaging can provide reflectance measurements at multiple spectral bands for each image pixel. These measurements can be used for estimation of important physiological parameters, such as oxygenation, which can provide indicators for the success of surgical treatment or the presence of abnormal tissue. The goal of this work was to develop a method to estimate physiological parameters in an accurate and rapid manner suited for modern high-resolution laparoscopic images.

METHODS

While previous methods for oxygenation estimation are based on either simple linear methods or complex model-based approaches exclusively suited for off-line processing, we propose a new approach that combines the high accuracy of model-based approaches with the speed and robustness of modern machine learning methods. Our concept is based on training random forest regressors using reflectance spectra generated with Monte Carlo simulations.

RESULTS

According to extensive in silico and in vivo experiments, the method features higher accuracy and robustness than state-of-the-art online methods and is orders of magnitude faster than other nonlinear regression based methods.

CONCLUSION

Our current implementation allows for near real-time oxygenation estimation from megapixel multispectral images and is thus well suited for online tissue analysis.

摘要

目的

多光谱成像可为每个图像像素提供多个光谱带的反射率测量值。这些测量值可用于估计重要的生理参数,如氧合情况,这可为手术治疗的成功与否或异常组织的存在提供指标。这项工作的目标是开发一种方法,以准确、快速的方式估计生理参数,适用于现代高分辨率腹腔镜图像。

方法

以往的氧合估计方法要么基于简单的线性方法,要么基于专门适用于离线处理的复杂模型方法,而我们提出了一种新方法,该方法将基于模型方法的高精度与现代机器学习方法的速度和稳健性相结合。我们的概念基于使用蒙特卡罗模拟生成的反射光谱训练随机森林回归器。

结果

根据大量的计算机模拟和体内实验,该方法比现有在线方法具有更高的准确性和稳健性,并且比其他基于非线性回归的方法快几个数量级。

结论

我们目前的实现允许从百万像素多光谱图像中进行近实时氧合估计,因此非常适合在线组织分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ab/4893375/de99d3950f98/11548_2016_1376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验