Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Sci Rep. 2022 Jun 30;12(1):11028. doi: 10.1038/s41598-022-15040-w.
Visual discrimination of tissue during surgery can be challenging since different tissues appear similar to the human eye. Hyperspectral imaging (HSI) removes this limitation by associating each pixel with high-dimensional spectral information. While previous work has shown its general potential to discriminate tissue, clinical translation has been limited due to the method's current lack of robustness and generalizability. Specifically, the scientific community is lacking a comprehensive spectral tissue atlas, and it is unknown whether variability in spectral reflectance is primarily explained by tissue type rather than the recorded individual or specific acquisition conditions. The contribution of this work is threefold: (1) Based on an annotated medical HSI data set (9059 images from 46 pigs), we present a tissue atlas featuring spectral fingerprints of 20 different porcine organs and tissue types. (2) Using the principle of mixed model analysis, we show that the greatest source of variability related to HSI images is the organ under observation. (3) We show that HSI-based fully-automatic tissue differentiation of 20 organ classes with deep neural networks is possible with high accuracy (> 95%). We conclude from our study that automatic tissue discrimination based on HSI data is feasible and could thus aid in intraoperative decisionmaking and pave the way for context-aware computer-assisted surgery systems and autonomous robotics.
在手术过程中,由于不同的组织在人眼看来相似,因此对组织进行可视化辨别具有一定挑战性。高光谱成像(HSI)通过将每个像素与高维光谱信息相关联,克服了这一限制。虽然之前的工作已经表明它具有普遍的组织辨别潜力,但由于该方法目前缺乏稳健性和通用性,其临床转化受到了限制。具体来说,科学界缺乏全面的光谱组织图谱,也不清楚光谱反射率的可变性主要是由组织类型决定,还是由记录的个体或特定采集条件决定。这项工作有三个贡献:(1)基于一个注释的医学高光谱图像数据集(来自 46 头猪的 9059 张图像),我们提出了一个组织图谱,其中包含 20 种不同的猪器官和组织类型的光谱指纹。(2)通过混合模型分析的原理,我们表明与 HSI 图像相关的最大可变性来源是所观察的器官。(3)我们表明,基于 HSI 的 20 种器官类别的全自动组织区分可以通过深度神经网络实现高精度(>95%)。我们从研究中得出结论,基于 HSI 数据的自动组织辨别是可行的,因此可以辅助术中决策,并为基于上下文的计算机辅助手术系统和自主机器人铺平道路。