Suppr超能文献

寻找类别一致特征:一种理解视觉类别表征的计算方法。

Searching for Category-Consistent Features: A Computational Approach to Understanding Visual Category Representation.

作者信息

Yu Chen-Ping, Maxfield Justin T, Zelinsky Gregory J

机构信息

Department of Computer Science.

Department of Psychology, Stony Brook University.

出版信息

Psychol Sci. 2016 Jun;27(6):870-84. doi: 10.1177/0956797616640237. Epub 2016 May 3.

Abstract

This article introduces a generative model of category representation that uses computer vision methods to extract category-consistent features (CCFs) directly from images of category exemplars. The model was trained on 4,800 images of common objects, and CCFs were obtained for 68 categories spanning subordinate, basic, and superordinate levels in a category hierarchy. When participants searched for these same categories, targets cued at the subordinate level were preferentially fixated, but fixated targets were verified faster when they followed a basic-level cue. The subordinate-level advantage in guidance is explained by the number of target-category CCFs, a measure of category specificity that decreases with movement up the category hierarchy. The basic-level advantage in verification is explained by multiplying the number of CCFs by sibling distance, a measure of category distinctiveness. With this model, the visual representations of real-world object categories, each learned from the vast numbers of image exemplars accumulated throughout everyday experience, can finally be studied.

摘要

本文介绍了一种类别表征生成模型,该模型使用计算机视觉方法直接从类别示例图像中提取类别一致特征(CCF)。该模型在4800张常见物体图像上进行训练,并针对类别层次结构中从属、基本和上级水平的68个类别获得了CCF。当参与者搜索这些相同类别时,从属水平提示的目标被优先注视,但当目标跟随基本水平提示时,被注视的目标被更快地验证。引导中从属水平优势由目标类别CCF的数量来解释,CCF数量是一种类别特异性度量,它随着在类别层次结构中的上升而减少。验证中基本水平优势通过将CCF数量乘以同级距离来解释,同级距离是一种类别独特性度量。借助该模型,最终可以研究现实世界物体类别的视觉表征,每个类别表征都从日常经验中积累的大量图像示例中学习而来。

相似文献

1
Searching for Category-Consistent Features: A Computational Approach to Understanding Visual Category Representation.
Psychol Sci. 2016 Jun;27(6):870-84. doi: 10.1177/0956797616640237. Epub 2016 May 3.
2
Similarity relations in visual search predict rapid visual categorization.
J Vis. 2012 Oct 23;12(11):19. doi: 10.1167/12.11.19.
3
Searching Through the Hierarchy: How Level of Target Categorization Affects Visual Search.
Vis cogn. 2012 Dec 1;20(10):1153-1163. doi: 10.1080/13506285.2012.735718. Epub 2012 Nov 12.
4
Typicality sharpens category representations in object-selective cortex.
Neuroimage. 2016 Jul 1;134:170-179. doi: 10.1016/j.neuroimage.2016.04.012. Epub 2016 Apr 12.
5
The characterization of actions at the superordinate, basic and subordinate level.
Psychol Res. 2022 Sep;86(6):1871-1891. doi: 10.1007/s00426-021-01624-0. Epub 2021 Dec 14.
6
Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares.
Neuropsychologia. 2016 Mar;83:201-226. doi: 10.1016/j.neuropsychologia.2015.10.023. Epub 2015 Oct 19.
7
The dynamics of categorization: Unraveling rapid categorization.
J Exp Psychol Gen. 2015 Jun;144(3):551-69. doi: 10.1037/a0039184. Epub 2015 May 4.
8
Basic level category structure emerges gradually across human ventral visual cortex.
J Cogn Neurosci. 2015 Jul;27(7):1427-46. doi: 10.1162/jocn_a_00790. Epub 2015 Mar 26.
9
Visual statistical learning at basic and subordinate category levels in real-world images.
Atten Percept Psychophys. 2018 Nov;80(8):1946-1961. doi: 10.3758/s13414-018-1566-z.
10
A Computational Approach towards Visual Object Recognition at Taxonomic Levels of Concepts.
Comput Intell Neurosci. 2015;2015:905421. doi: 10.1155/2015/905421. Epub 2015 Jun 22.

引用本文的文献

1
Distractor similarity and category variability effects in search.
Atten Percept Psychophys. 2024 Oct;86(7):2231-2250. doi: 10.3758/s13414-024-02924-4. Epub 2024 Jul 9.
2
The attentive reconstruction of objects facilitates robust object recognition.
PLoS Comput Biol. 2024 Jun 13;20(6):e1012159. doi: 10.1371/journal.pcbi.1012159. eCollection 2024 Jun.
3
Explicit and implicit category learning in categorical visual search.
Atten Percept Psychophys. 2023 Oct;85(7):2131-2149. doi: 10.3758/s13414-023-02789-z. Epub 2023 Oct 2.
4
Generalisation of value-based attentional priority is category-specific.
Q J Exp Psychol (Hove). 2023 Oct;76(10):2401-2409. doi: 10.1177/17470218221144318. Epub 2022 Dec 27.
5
Children's knowledge of superordinate words predicts subsequent inductive reasoning.
J Exp Child Psychol. 2022 Sep;221:105449. doi: 10.1016/j.jecp.2022.105449. Epub 2022 May 10.
6
Real-world object categories and scene contexts conjointly structure statistical learning for the guidance of visual search.
Atten Percept Psychophys. 2022 May;84(4):1304-1316. doi: 10.3758/s13414-022-02475-6. Epub 2022 Apr 14.
7
Negative cues minimize visual search specificity effects.
Vision Res. 2022 Jul;196:108030. doi: 10.1016/j.visres.2022.108030. Epub 2022 Mar 18.
8
Categorical cuing: Object categories structure the acquisition of statistical regularities to guide visual search.
J Exp Psychol Gen. 2021 Dec;150(12):2552-2566. doi: 10.1037/xge0001059. Epub 2021 Apr 8.
9
Target specificity improves search, but how universal is the benefit?
Atten Percept Psychophys. 2020 Nov;82(8):3878-3894. doi: 10.3758/s13414-020-02111-1.
10
Specifying the precision of guiding features for visual search.
J Exp Psychol Hum Percept Perform. 2019 Sep;45(9):1248-1264. doi: 10.1037/xhp0000668. Epub 2019 Jun 20.

本文引用的文献

1
The what, where, and why of priority maps and their interactions with visual working memory.
Ann N Y Acad Sci. 2015 Mar;1339(1):154-64. doi: 10.1111/nyas.12606. Epub 2015 Jan 7.
2
Deep supervised, but not unsupervised, models may explain IT cortical representation.
PLoS Comput Biol. 2014 Nov 6;10(11):e1003915. doi: 10.1371/journal.pcbi.1003915. eCollection 2014 Nov.
3
Effects of target typicality on categorical search.
J Vis. 2014 Oct 1;14(12):1. doi: 10.1167/14.12.1.
4
Observation versus classification in supervised category learning.
Mem Cognit. 2015 Feb;43(2):266-82. doi: 10.3758/s13421-014-0458-2.
7
Modelling eye movements in a categorical search task.
Philos Trans R Soc Lond B Biol Sci. 2013 Sep 9;368(1628):20130058. doi: 10.1098/rstb.2013.0058. Print 2013 Oct 19.
8
Searching Through the Hierarchy: How Level of Target Categorization Affects Visual Search.
Vis cogn. 2012 Dec 1;20(10):1153-1163. doi: 10.1080/13506285.2012.735718. Epub 2012 Nov 12.
9
Different states in visual working memory: when it guides attention and when it does not.
Trends Cogn Sci. 2011 Jul;15(7):327-34. doi: 10.1016/j.tics.2011.05.004. Epub 2011 Jun 12.
10
Language, thought, and color: Whorf was half right.
Trends Cogn Sci. 2009 Oct;13(10):439-46. doi: 10.1016/j.tics.2009.07.001. Epub 2009 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验