Department of Psychology, University of Central Florida, Orlando, FL, USA.
Lawrence Technological University, 21000 West Ten Mile Road, Southfield, MI, 48075, USA.
Atten Percept Psychophys. 2023 Oct;85(7):2131-2149. doi: 10.3758/s13414-023-02789-z. Epub 2023 Oct 2.
Categorical search has been heavily investigated over the past decade, mostly using natural categories that leave the underlying category mental representation unknown. The categorization literature offers several theoretical accounts of category mental representations. One prominent account is that separate learning systems account for classification: an explicit learning system that relies on easily verbalized rules and an implicit learning system that relies on an associatively learned (nonverbalizable) information integration strategy. The current study assessed the contributions of these separate category learning systems in the context of categorical search using simple stimuli. Participants learned to classify sinusoidal grating stimuli according to explicit or implicit categorization strategies, followed by a categorical search task using these same stimulus categories. Computational modeling determined which participants used the appropriate classification strategy during training and search, and eye movements collected during categorical search were assessed. We found that the trained categorization strategies overwhelmingly transferred to the verification (classification response) phase of search. Implicit category learning led to faster search response and shorter target dwell times relative to explicit category learning, consistent with the notion that explicit rule classification relies on a more deliberative response strategy. Participants who transferred the correct category learning strategy to the search guidance phase produced stronger search guidance (defined as the proportion of trials on which the target was the first item fixated) with evidence of greater guidance in implicit-strategy learners. This demonstrates that both implicit and explicit categorization systems contribute to categorical search and produce dissociable patterns of data.
在过去的十年中,人们对类别搜索进行了大量研究,主要使用自然类别,而不了解潜在的类别心理表示。分类文献提供了几种类别心理表示的理论解释。一个突出的解释是,分离的学习系统解释分类:一个依赖于易于口头表达的规则的显式学习系统和一个依赖于联想学习的(不可口头表达的)信息整合策略的隐式学习系统。本研究使用简单的刺激物,在类别搜索的背景下评估了这些分离的类别学习系统的贡献。参与者根据显式或隐式分类策略学习对正弦光栅刺激进行分类,然后使用这些相同的刺激类别进行类别搜索任务。计算模型确定了哪些参与者在训练和搜索过程中使用了适当的分类策略,并且评估了在类别搜索过程中收集的眼动。我们发现,训练有素的分类策略在搜索的验证(分类响应)阶段压倒性地转移。与显式类别学习相比,隐式类别学习导致更快的搜索响应和更短的目标停留时间,这与显式规则分类依赖于更深思熟虑的响应策略的观点一致。将正确的类别学习策略转移到搜索指导阶段的参与者产生了更强的搜索指导(定义为目标是第一个注视点的试验比例),并且在隐式策略学习者中显示出更强的指导。这表明,隐式和显式分类系统都有助于类别搜索,并产生可分离的数据模式。