Yoo Jejoong, Wilson James, Aksimentiev Aleksei
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801.
Center for the Physics of Living Cells, Urbana, IL, 61801.
Biopolymers. 2016 Oct;105(10):752-63. doi: 10.1002/bip.22868.
Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016.
钙离子(Ca(2+))在细胞信号传导和脑功能等各种基本生物过程中发挥着关键作用。分子动力学(MD)模拟已被用于研究此类相互作用,然而,标准MD力场提供的Ca(2+)模型的准确性尚未经过严格测试。在这里,我们通过计算模型化合物的渗透压和DNA-DNA相互作用的自由能,评估了最流行的经典力场AMBER和CHARMM中Ca(2+)模型的性能。在使用这两种标准模型进行的模拟中,Ca(2+)离子会与氯离子、醋酸根离子和磷酸根离子形成人工簇;对于这两种力场,CaAc2和CaCl2溶液的渗透压仅为实验值的一小部分。在Ca(2+)介导的DNA-DNA相互作用模拟中使用Ca(2+)离子的标准参数化会导致定性错误的结果:AMBER和CHARMM模拟均表明DNA之间存在强烈的相互吸引,而在实验中,DNA分子相互排斥。Ca(2+)对DNA磷酸根的人工吸引力足以影响电场驱动DNA通过固态纳米孔的转运方向。为了解决标准Ca(2+)模型的这些缺点,我们引入了一种水合Ca(2+)离子的定制模型,并表明使用我们的模型可使上述MD模拟结果与实验在定量上达成一致。我们改进后的Ca(2+)模型可轻松应用于各种生物分子系统的MD模拟,包括核酸、蛋白质和脂质双层膜。© 2016威利期刊公司。生物聚合物105: 752 - 763, 2016。