Suppr超能文献

使用经典生物分子力场进行分子动力学模拟的水合钙离子改进模型。

Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields.

作者信息

Yoo Jejoong, Wilson James, Aksimentiev Aleksei

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801.

Center for the Physics of Living Cells, Urbana, IL, 61801.

出版信息

Biopolymers. 2016 Oct;105(10):752-63. doi: 10.1002/bip.22868.

Abstract

Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016.

摘要

钙离子(Ca(2+))在细胞信号传导和脑功能等各种基本生物过程中发挥着关键作用。分子动力学(MD)模拟已被用于研究此类相互作用,然而,标准MD力场提供的Ca(2+)模型的准确性尚未经过严格测试。在这里,我们通过计算模型化合物的渗透压和DNA-DNA相互作用的自由能,评估了最流行的经典力场AMBER和CHARMM中Ca(2+)模型的性能。在使用这两种标准模型进行的模拟中,Ca(2+)离子会与氯离子、醋酸根离子和磷酸根离子形成人工簇;对于这两种力场,CaAc2和CaCl2溶液的渗透压仅为实验值的一小部分。在Ca(2+)介导的DNA-DNA相互作用模拟中使用Ca(2+)离子的标准参数化会导致定性错误的结果:AMBER和CHARMM模拟均表明DNA之间存在强烈的相互吸引,而在实验中,DNA分子相互排斥。Ca(2+)对DNA磷酸根的人工吸引力足以影响电场驱动DNA通过固态纳米孔的转运方向。为了解决标准Ca(2+)模型的这些缺点,我们引入了一种水合Ca(2+)离子的定制模型,并表明使用我们的模型可使上述MD模拟结果与实验在定量上达成一致。我们改进后的Ca(2+)模型可轻松应用于各种生物分子系统的MD模拟,包括核酸、蛋白质和脂质双层膜。© 2016威利期刊公司。生物聚合物105: 752 - 763, 2016。

相似文献

2
Assessing the Current State of Amber Force Field Modifications for DNA.
J Chem Theory Comput. 2016 Aug 9;12(8):4114-27. doi: 10.1021/acs.jctc.6b00186. Epub 2016 Jul 7.
4
Protein-Nucleic Acid Interactions for RNA Polymerase II Elongation Factors by Molecular Dynamics Simulations.
J Chem Inf Model. 2022 Jun 27;62(12):3079-3089. doi: 10.1021/acs.jcim.2c00121. Epub 2022 Jun 10.
9
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
J Chem Theory Comput. 2016 Jan 12;12(1):405-13. doi: 10.1021/acs.jctc.5b00935. Epub 2015 Dec 3.
10
Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations.
J Phys Chem B. 2015 Jan 8;119(1):219-27. doi: 10.1021/jp507008x. Epub 2014 Dec 22.

引用本文的文献

1
In silico characterization of the gating and selectivity mechanism of the human TPC2 cation channel.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202313506. Epub 2025 Feb 21.
2
Understanding pectin cross-linking in plant cell walls.
Commun Biol. 2025 Jan 17;8(1):72. doi: 10.1038/s42003-025-07495-0.
3
Balancing Group I Monatomic Ion-Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field.
J Chem Theory Comput. 2024 Apr 23;20(8):3242-3257. doi: 10.1021/acs.jctc.3c01380. Epub 2024 Apr 8.
4
Curvature Matters: Modeling Calcium Binding to Neutral and Anionic Phospholipid Bilayers.
J Phys Chem B. 2023 May 25;127(20):4523-4531. doi: 10.1021/acs.jpcb.3c01962. Epub 2023 May 16.
5
Redox regulation of K7 channels through EF3 hand of calmodulin.
Elife. 2023 Feb 20;12:e81961. doi: 10.7554/eLife.81961.
6
Recalibrating the calcium trap in amino acid carboxyl groups classical molecular dynamics simulations.
Phys Chem Chem Phys. 2023 Jan 4;25(2):1220-1235. doi: 10.1039/d2cp02879d.
7
Multiscale modelling of claudin-based assemblies: A magnifying glass for novel structures of biological interfaces.
Comput Struct Biotechnol J. 2022 Oct 28;20:5984-6010. doi: 10.1016/j.csbj.2022.10.038. eCollection 2022.
9
Computational Analyses of the AtTPC1 (Arabidopsis Two-Pore Channel 1) Permeation Pathway.
Int J Mol Sci. 2021 Sep 26;22(19):10345. doi: 10.3390/ijms221910345.
10
NEDD8 Deamidation Inhibits Cullin RING Ligase Dynamics.
Front Immunol. 2021 Aug 17;12:695331. doi: 10.3389/fimmu.2021.695331. eCollection 2021.

本文引用的文献

1
Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements.
J Chem Theory Comput. 2016 Apr 12;12(4):1401-7. doi: 10.1021/acs.jctc.5b01136. Epub 2016 Mar 22.
2
The structure and intermolecular forces of DNA condensates.
Nucleic Acids Res. 2016 Mar 18;44(5):2036-46. doi: 10.1093/nar/gkw081. Epub 2016 Feb 15.
4
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
5
Multisite Ion Models That Improve Coordination and Free Energy Calculations in Molecular Dynamics Simulations.
J Chem Theory Comput. 2013 Aug 13;9(8):3538-42. doi: 10.1021/ct400177g. Epub 2013 Jul 18.
6
Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field.
J Phys Chem B. 2015 Jul 23;119(29):9401-16. doi: 10.1021/jp510560k. Epub 2015 Feb 4.
7
Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations.
J Phys Chem B. 2015 Jan 8;119(1):219-27. doi: 10.1021/jp507008x. Epub 2014 Dec 22.
8
Smooth DNA transport through a narrowed pore geometry.
Biophys J. 2014 Nov 18;107(10):2381-93. doi: 10.1016/j.bpj.2014.10.017.
9
Label-free optical detection of biomolecular translocation through nanopore arrays.
ACS Nano. 2014 Oct 28;8(10):10774-81. doi: 10.1021/nn504551d. Epub 2014 Sep 22.
10
Nuclear calcium signalling in the regulation of brain function.
Nat Rev Neurosci. 2013 Sep;14(9):593-608. doi: 10.1038/nrn3531. Epub 2013 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验