Suppr超能文献

通过细胞淘选,几何形状和表达增强了功能性酵母展示配体的富集。

Geometry and expression enhance enrichment of functional yeast-displayed ligands via cell panning.

作者信息

Stern Lawrence A, Schrack Ian A, Johnson Sadie M, Deshpande Aakash, Bennett Nathaniel R, Harasymiw Lauren A, Gardner Melissa K, Hackel Benjamin J

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455.

Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota.

出版信息

Biotechnol Bioeng. 2016 Nov;113(11):2328-41. doi: 10.1002/bit.26001. Epub 2016 Jun 30.

Abstract

Yeast surface display has proven to be an effective tool in the discovery and evolution of ligands with new or improved binding activity. Selections for binding activity are generally carried out using immobilized or fluorescently labeled soluble domains of target molecules such as recombinant ectodomain fragments. While this method typically provides ligands with high affinity and specificity for the soluble molecular target, translation to binding true membrane-bound cellular target is commonly problematic. Direct selections against mammalian cell surfaces can be carried out either exclusively or in combination with soluble target-based selections to further direct towards ligands for genuine cellular target. Using a series of fibronectin domain, affibody, and Gp2 ligands and human cell lines expressing a range of their targets, epidermal growth factor receptor and carcinoembryonic antigen, this study quantitatively identifies the elements that dictate ligand enrichment and yield. Most notably, extended flexible linkers between ligand and yeast enhance enrichment ratios from 1.4 ± 0.8 to 62 ± 57 for a low-affinity (>600 nM) binder on cells with high target expression and from 14 ± 13 to 74 ± 25 for a high-affinity binder (2 nM) on cells with medium valency. Inversion of the yeast display fusion from C-terminal display to N-terminal display still enables enrichment albeit with 40-97% reduced efficacy. Collectively, this study further enlightens the conditions-while highlighting new approaches-that yield successful enrichment of yeast-displayed binding ligands via panning on mammalian cells. Biotechnol. Bioeng. 2016;113: 2328-2341. © 2016 Wiley Periodicals, Inc.

摘要

酵母表面展示已被证明是发现和进化具有新的或改进的结合活性的配体的有效工具。结合活性的筛选通常使用靶分子的固定化或荧光标记的可溶性结构域进行,例如重组胞外结构域片段。虽然这种方法通常能提供对可溶性分子靶标具有高亲和力和特异性的配体,但转化为与真正的膜结合细胞靶标的结合通常存在问题。针对哺乳动物细胞表面的直接筛选可以单独进行,也可以与基于可溶性靶标的筛选相结合,以进一步筛选出针对真正细胞靶标的配体。本研究使用一系列纤连蛋白结构域、亲和体和Gp2配体以及表达一系列其靶标的人细胞系,即表皮生长因子受体和癌胚抗原,定量鉴定了决定配体富集和产量的因素。最值得注意的是,对于高靶标表达细胞上的低亲和力(>600 nM)结合剂,配体与酵母之间的延长柔性接头将富集率从1.4±0.8提高到62±57,对于中等价态细胞上的高亲和力结合剂(2 nM),富集率从14±13提高到74±25。将酵母展示融合从C端展示颠倒为N端展示仍然能够实现富集,尽管效率降低了40-97%。总的来说,本研究进一步阐明了条件,同时突出了新方法,即通过在哺乳动物细胞上淘选成功富集酵母展示的结合配体。《生物技术与生物工程》2016年;113:2328-2341。©2016威利期刊公司

相似文献

1
Geometry and expression enhance enrichment of functional yeast-displayed ligands via cell panning.
Biotechnol Bioeng. 2016 Nov;113(11):2328-41. doi: 10.1002/bit.26001. Epub 2016 Jun 30.
2
Magnetic Bead-Immobilized Mammalian Cells Are Effective Targets to Enrich Ligand-Displaying Yeast.
ACS Comb Sci. 2020 May 11;22(5):274-284. doi: 10.1021/acscombsci.0c00036. Epub 2020 Apr 27.
3
Cellular-Based Selections Aid Yeast-Display Discovery of Genuine Cell-Binding Ligands: Targeting Oncology Vascular Biomarker CD276.
ACS Comb Sci. 2019 Mar 11;21(3):207-222. doi: 10.1021/acscombsci.8b00156. Epub 2019 Jan 24.
5
Ligand Engineering via Yeast Surface Display and Adherent Cell Panning.
Methods Mol Biol. 2020;2070:303-320. doi: 10.1007/978-1-4939-9853-1_17.
6
Titratable Avidity Reduction Enhances Affinity Discrimination in Mammalian Cellular Selections of Yeast-Displayed Ligands.
ACS Comb Sci. 2017 May 8;19(5):315-323. doi: 10.1021/acscombsci.6b00191. Epub 2017 Mar 31.
7
The use of scFv-displaying yeast in mammalian cell surface selections.
J Immunol Methods. 2005 Sep;304(1-2):30-42. doi: 10.1016/j.jim.2005.05.006.
8
Yeast surface display for protein engineering and characterization.
Curr Opin Struct Biol. 2007 Aug;17(4):467-73. doi: 10.1016/j.sbi.2007.08.012. Epub 2007 Sep 17.
9
Development of a novel strategy for engineering high-affinity proteins by yeast display.
Protein Eng Des Sel. 2006 Jun;19(6):255-64. doi: 10.1093/protein/gzl008. Epub 2006 Mar 20.
10
Protein engineering by cell-surface display.
Curr Opin Biotechnol. 2001 Aug;12(4):395-9. doi: 10.1016/s0958-1669(00)00233-0.

引用本文的文献

1
An engineering strategy to target activated EGFR with CAR T cells.
Cell Rep Methods. 2024 Apr 22;4(4):100728. doi: 10.1016/j.crmeth.2024.100728. Epub 2024 Mar 15.
2
Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds.
ACS Synth Biol. 2023 Dec 15;12(12):3608-3622. doi: 10.1021/acssynbio.3c00409. Epub 2023 Nov 27.
3
Single-Cell B-Cell Sequencing to Generate Natively Paired scFab Yeast Surface Display Libraries.
Methods Mol Biol. 2023;2681:175-212. doi: 10.1007/978-1-0716-3279-6_11.
4
Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach.
Cell Rep Methods. 2023 Mar 15;3(3):100429. doi: 10.1016/j.crmeth.2023.100429. eCollection 2023 Mar 27.
6
Antibody Library Screening Using Yeast Biopanning and Fluorescence-Activated Cell Sorting.
Methods Mol Biol. 2022;2491:177-193. doi: 10.1007/978-1-0716-2285-8_10.
7
Identification of lamprey variable lymphocyte receptors that target the brain vasculature.
Sci Rep. 2022 Apr 11;12(1):6044. doi: 10.1038/s41598-022-09962-8.

本文引用的文献

1
Synthetic and natural consensus design for engineering charge within an affibody targeting epidermal growth factor receptor.
Biotechnol Bioeng. 2016 Aug;113(8):1628-38. doi: 10.1002/bit.25931. Epub 2016 Feb 4.
2
A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering.
Chem Biol. 2015 Jul 23;22(7):946-56. doi: 10.1016/j.chembiol.2015.06.012. Epub 2015 Jul 9.
3
Selection strategies for anticancer antibody discovery: searching off the beaten path.
Trends Biotechnol. 2015 May;33(5):292-301. doi: 10.1016/j.tibtech.2015.02.008. Epub 2015 Mar 26.
4
Evaluation of serum-based cancer biomarkers: a brief review from a clinical and computational viewpoint.
Crit Rev Oncol Hematol. 2015 Feb;93(2):103-15. doi: 10.1016/j.critrevonc.2014.10.002. Epub 2014 Oct 14.
5
Identification of an antibody fragment specific for androgen-dependent prostate cancer cells.
BMC Biotechnol. 2014 Sep 3;14:81. doi: 10.1186/1472-6750-14-81.
6
Identification and characterization of a novel phage display-derived peptide with affinity for human brain metastatic breast cancer.
Biotechnol Lett. 2014 Nov;36(11):2291-301. doi: 10.1007/s10529-014-1608-0. Epub 2014 Jul 22.
7
Cancer biomarker discovery: current status and future perspectives.
Int J Radiat Biol. 2014 Aug;90(8):659-77. doi: 10.3109/09553002.2014.892229. Epub 2014 May 12.
8
Clinical use of novel urine and blood based prostate cancer biomarkers: a review.
Clin Biochem. 2014 Jul;47(10-11):889-96. doi: 10.1016/j.clinbiochem.2013.10.023. Epub 2013 Oct 29.
9
PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins.
Protein Eng Des Sel. 2013 Aug;26(8):489-501. doi: 10.1093/protein/gzt023. Epub 2013 Jun 10.
10
Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses.
Cancer Res. 2013 Aug 1;73(15):4820-9. doi: 10.1158/0008-5472.CAN-12-3457. Epub 2013 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验