Suppr超能文献

使用约束重建的高分辨率全脑动态对比增强磁共振成像:脑肿瘤患者的前瞻性临床评估

High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

作者信息

Guo Yi, Lebel R Marc, Zhu Yinghua, Lingala Sajan Goud, Shiroishi Mark S, Law Meng, Nayak Krishna

机构信息

Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089.

GE Healthcare, Calgary, Alberta AB T2P 1G1, Canada.

出版信息

Med Phys. 2016 May;43(5):2013. doi: 10.1118/1.4944736.

Abstract

PURPOSE

To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints.

METHODS

Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists.

RESULTS

The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans.

CONCLUSIONS

The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

摘要

目的

临床评估一种高度加速的T1加权动态对比增强(DCE)MRI技术,该技术通过欠采样和具有多个稀疏约束的约束重建来提供高空间分辨率和全脑覆盖。

方法

对15例脑肿瘤患者进行常规(加速因子为2的敏感度编码[SENSE])和实验性DCE-MRI(加速因子为30)扫描,两次扫描间隔20分钟。常规临床DCE-MRI的体素尺寸为0.9×1.3×7.0 mm³,视野(FOV)为22×22×4.2 cm³,实验性DCE-MRI的体素尺寸为0.9×0.9×1.9 mm³,覆盖范围更广,为22×22×19 cm³。两种扫描方案的时间分辨率均为5秒。两名放射科医生对时间分辨图像和血脑屏障通透性图进行了定性评估。

结果

实验性DCE-MRI扫描在所有病例中均未显示定性信息丢失,同时实现了显著更高的空间分辨率和全脑空间覆盖。实验性扫描的平均定性评分(0至3分)为2.1分,常规临床扫描为1.1分。

结论

所提出的DCE-MRI方法提供了临床上更优的图像质量,具有比现有方法更高的空间分辨率和覆盖范围。这些优势可能使大脑的通透性全面映射成为可能,这在大病变或遍布全脑的多个病变的情况下尤其有价值。

相似文献

2
Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI.
Magn Reson Med. 2017 Oct;78(4):1566-1578. doi: 10.1002/mrm.26540. Epub 2016 Nov 17.
5
Sparse precontrast T mapping for high-resolution whole-brain DCE-MRI.
Magn Reson Med. 2021 Oct;86(4):2234-2249. doi: 10.1002/mrm.28849. Epub 2021 May 25.
9
Tracer kinetic models as temporal constraints during brain tumor DCE-MRI reconstruction.
Med Phys. 2020 Jan;47(1):37-51. doi: 10.1002/mp.13885. Epub 2019 Nov 19.

引用本文的文献

1
Current trends in the characterization and monitoring of vascular response to cancer therapy.
Cancer Imaging. 2024 Oct 23;24(1):143. doi: 10.1186/s40644-024-00767-8.
3
Modeling Blood-Brain Barrier Permeability to Solutes and Drugs In Vivo.
Pharmaceutics. 2022 Aug 15;14(8):1696. doi: 10.3390/pharmaceutics14081696.
4
Research on DCE-MRI Images Based on Deep Transfer Learning in Breast Cancer Adjuvant Curative Effect Prediction.
J Healthc Eng. 2022 Feb 23;2022:4477099. doi: 10.1155/2022/4477099. eCollection 2022.
6
Optimizing constrained reconstruction in magnetic resonance imaging for signal detection.
Phys Med Biol. 2021 Jul 16;66(14). doi: 10.1088/1361-6560/ac1021.
8
Sparse precontrast T mapping for high-resolution whole-brain DCE-MRI.
Magn Reson Med. 2021 Oct;86(4):2234-2249. doi: 10.1002/mrm.28849. Epub 2021 May 25.
9
Tracer kinetic models as temporal constraints during brain tumor DCE-MRI reconstruction.
Med Phys. 2020 Jan;47(1):37-51. doi: 10.1002/mp.13885. Epub 2019 Nov 19.
10
Spatio-Temporally Constrained Reconstruction for Hyperpolarized Carbon-13 MRI Using Kinetic Models.
IEEE Trans Med Imaging. 2018 Dec;37(12):2603-2612. doi: 10.1109/TMI.2018.2844246. Epub 2018 Jun 5.

本文引用的文献

1
GOCART: GOlden-angle CArtesian randomized time-resolved 3D MRI.
Magn Reson Imaging. 2016 Sep;34(7):940-50. doi: 10.1016/j.mri.2015.12.030. Epub 2015 Dec 19.
2
Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma.
J Neurooncol. 2015 Oct;125(1):183-90. doi: 10.1007/s11060-015-1893-z. Epub 2015 Aug 15.
3
Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials.
Neuro Oncol. 2015 Sep;17(9):1188-98. doi: 10.1093/neuonc/nov095. Epub 2015 Aug 5.
4
Response assessment criteria for brain metastases: proposal from the RANO group.
Lancet Oncol. 2015 Jun;16(6):e270-8. doi: 10.1016/S1470-2045(15)70057-4. Epub 2015 May 27.
5
Blood-brain barrier breakdown in the aging human hippocampus.
Neuron. 2015 Jan 21;85(2):296-302. doi: 10.1016/j.neuron.2014.12.032.
6
Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review.
Neuroimage Clin. 2014 Sep 10;6:262-74. doi: 10.1016/j.nicl.2014.09.002. eCollection 2014.
7
Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab.
J Neurooncol. 2015 Jan;121(2):373-80. doi: 10.1007/s11060-014-1644-6. Epub 2014 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验