Calcagno Claudia, Lobatto Mark E, Dyvorne Hadrien, Robson Philip M, Millon Antoine, Senders Max L, Lairez Olivier, Ramachandran Sarayu, Coolen Bram F, Black Alexandra, Mulder Willem J M, Fayad Zahi A
Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands.
NMR Biomed. 2015 Oct;28(10):1304-14. doi: 10.1002/nbm.3369. Epub 2015 Aug 30.
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.
导致中风和心肌梗死的动脉粥样硬化斑块的特征是微血管通透性增加和炎症。动态对比增强磁共振成像(DCE-MRI)已被提议作为一种在体内量化血管壁微血管通透性的方法。到目前为止,大多数关于动脉粥样硬化的DCE-MRI研究都局限于二维(2D)多层成像。尽管这些方法能够提供对动脉血管壁成像所需的高空间分辨率,但它们无法在广泛的解剖覆盖范围内量化斑块通透性,而这是对诸如动脉粥样硬化等异质性疾病进行成像时的一个基本特征。据我们所知,我们首次对三维(3D)高分辨率DCE-MRI进行了系统评估,以对整个血管床的斑块通透性进行广泛量化,并在动脉粥样硬化兔模型中进行了验证。我们比较了两种采集方法:采用运动敏感驱动平衡(MSDE)准备的3D涡轮场回波(TFE)和3D涡轮自旋回波(TSE)。我们发现,在时间稳定性指标方面,3D TFE DCE-MRI优于3D TSE DCE-MRI。两种序列在观察者内和观察者间均显示出良好的可靠性,并且与通过伊文思蓝近红外荧光(NIRF)进行的离体通透性测量有显著相关性。此外,我们探讨了使用压缩感知来加速动脉粥样硬化的3D DCE-MRI的可行性,以提高其时间分辨率,从而提高通透性量化的准确性。通过回顾性欠采样和重建,我们表明单独使用压缩感知可使3D DCE-MRI加速高达四倍。我们预计,具有前瞻性压缩感知加速功能的高空间分辨率3D DCE-MRI的开发可能会实现对整个血管床动脉粥样硬化斑块通透性更准确、更广泛的量化。我们预见,这种方法可能有助于对患者的斑块通透性进行全面、准确的评估,并且可能成为评估已批准和新型心血管疾病药物治疗反应的有用工具。