Suppr超能文献

三维动态对比增强磁共振成像用于准确、全面地量化动脉粥样硬化斑块中的微血管通透性。

Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

作者信息

Calcagno Claudia, Lobatto Mark E, Dyvorne Hadrien, Robson Philip M, Millon Antoine, Senders Max L, Lairez Olivier, Ramachandran Sarayu, Coolen Bram F, Black Alexandra, Mulder Willem J M, Fayad Zahi A

机构信息

Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands.

出版信息

NMR Biomed. 2015 Oct;28(10):1304-14. doi: 10.1002/nbm.3369. Epub 2015 Aug 30.

Abstract

Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.

摘要

导致中风和心肌梗死的动脉粥样硬化斑块的特征是微血管通透性增加和炎症。动态对比增强磁共振成像(DCE-MRI)已被提议作为一种在体内量化血管壁微血管通透性的方法。到目前为止,大多数关于动脉粥样硬化的DCE-MRI研究都局限于二维(2D)多层成像。尽管这些方法能够提供对动脉血管壁成像所需的高空间分辨率,但它们无法在广泛的解剖覆盖范围内量化斑块通透性,而这是对诸如动脉粥样硬化等异质性疾病进行成像时的一个基本特征。据我们所知,我们首次对三维(3D)高分辨率DCE-MRI进行了系统评估,以对整个血管床的斑块通透性进行广泛量化,并在动脉粥样硬化兔模型中进行了验证。我们比较了两种采集方法:采用运动敏感驱动平衡(MSDE)准备的3D涡轮场回波(TFE)和3D涡轮自旋回波(TSE)。我们发现,在时间稳定性指标方面,3D TFE DCE-MRI优于3D TSE DCE-MRI。两种序列在观察者内和观察者间均显示出良好的可靠性,并且与通过伊文思蓝近红外荧光(NIRF)进行的离体通透性测量有显著相关性。此外,我们探讨了使用压缩感知来加速动脉粥样硬化的3D DCE-MRI的可行性,以提高其时间分辨率,从而提高通透性量化的准确性。通过回顾性欠采样和重建,我们表明单独使用压缩感知可使3D DCE-MRI加速高达四倍。我们预计,具有前瞻性压缩感知加速功能的高空间分辨率3D DCE-MRI的开发可能会实现对整个血管床动脉粥样硬化斑块通透性更准确、更广泛的量化。我们预见,这种方法可能有助于对患者的斑块通透性进行全面、准确的评估,并且可能成为评估已批准和新型心血管疾病药物治疗反应的有用工具。

相似文献

3
Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T.
PLoS One. 2020 Dec 14;15(12):e0241779. doi: 10.1371/journal.pone.0241779. eCollection 2020.
5
Use of contrast enhancement and high-resolution 3D black-blood MRI to identify inflammation in atherosclerosis.
JACC Cardiovasc Imaging. 2010 Nov;3(11):1127-35. doi: 10.1016/j.jcmg.2010.08.012.
6
A fast screening protocol for carotid plaques imaging using 3D multi-contrast MRI without contrast agent.
Magn Reson Imaging. 2017 Jun;39:89-97. doi: 10.1016/j.mri.2016.10.028. Epub 2016 Oct 28.
10
Vessel wall and adventitial DCE-MRI parameters demonstrate similar correlations with carotid plaque microvasculature on histology.
J Magn Reson Imaging. 2017 Oct;46(4):1053-1059. doi: 10.1002/jmri.25648. Epub 2017 Feb 2.

引用本文的文献

1
Systems immunology-based drug repurposing framework to target inflammation in atherosclerosis.
Nat Cardiovasc Res. 2023 Jun;2(6):550-571. doi: 10.1038/s44161-023-00278-y. Epub 2023 Jun 8.
3
Dynamic Contrast-Enhanced MRI in Abdominal Aortic Aneurysms as a Potential Marker for Disease Progression.
J Magn Reson Imaging. 2023 Oct;58(4):1258-1267. doi: 10.1002/jmri.28640. Epub 2023 Feb 6.
4
PET/MR imaging of inflammation in atherosclerosis.
Nat Biomed Eng. 2023 Mar;7(3):202-220. doi: 10.1038/s41551-022-00970-7. Epub 2022 Dec 15.
5
An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data.
Magn Reson Med. 2023 Apr;89(4):1617-1633. doi: 10.1002/mrm.29547. Epub 2022 Dec 5.
7
Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging.
Biomedicines. 2021 Feb 12;9(2):185. doi: 10.3390/biomedicines9020185.
8
Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T.
PLoS One. 2020 Dec 14;15(12):e0241779. doi: 10.1371/journal.pone.0241779. eCollection 2020.
9
Multimodal Positron Emission Tomography Imaging to Quantify Uptake of Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall.
Bioconjug Chem. 2020 Feb 19;31(2):360-368. doi: 10.1021/acs.bioconjchem.9b00256. Epub 2019 Jun 7.
10
Quantitative 3D dynamic contrast-enhanced (DCE) MR imaging of carotid vessel wall by fast T1 mapping using Multitasking.
Magn Reson Med. 2019 Apr;81(4):2302-2314. doi: 10.1002/mrm.27553. Epub 2018 Oct 28.

本文引用的文献

1
Assessing large-vessel endothelial permeability using near-infrared fluorescence imaging--brief report.
Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):783-6. doi: 10.1161/ATVBAHA.114.305131. Epub 2015 Feb 12.
2
Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging.
ACS Nano. 2015 Feb 24;9(2):1837-47. doi: 10.1021/nn506750r. Epub 2015 Jan 28.
4
Atherosclerotic plaque inflammation quantification using dynamic contrast-enhanced (DCE) MRI.
Quant Imaging Med Surg. 2013 Dec;3(6):298-301. doi: 10.3978/j.issn.2223-4292.2013.12.01.
5
Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1078-83. doi: 10.1073/pnas.1322725111. Epub 2014 Jan 6.
7
Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison.
PLoS One. 2013 Oct 2;8(10):e75173. doi: 10.1371/journal.pone.0075173. eCollection 2013.
10
The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis.
Eur J Nucl Med Mol Imaging. 2013 Dec;40(12):1884-93. doi: 10.1007/s00259-013-2518-4. Epub 2013 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验