Goetz Laurent, Piallat Brigitte, Bhattacharjee Manik, Mathieu Hervé, David Olivier, Chabardès Stéphan
Université Grenoble Alpes, F-38000 Grenoble, France, Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France.
Université Grenoble Alpes, F-38000 Grenoble, France, Inserm, U1216, Grenoble Institut des Neurosciences, F-38000 Grenoble, France, Unité Mixte de Service IRMaGe, Centre Hospitalier Universitaire Grenoble, Grenoble 38043, Cedex 9, France, and Unité Mixte de Service 3552, Centre National de la Recherche Scientifique, Grenoble 38043, Cedex 9, France.
J Neurosci. 2016 May 4;36(18):4917-29. doi: 10.1523/JNEUROSCI.2514-15.2016.
The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models.
We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs.
中脑网状结构(MRF)由脚桥核和楔状核组成,这两个神经元结构被认为是脊髓上运动控制、肌张力、觉醒和快速眼动睡眠的关键要素。MRF在调节觉醒状态以实现从清醒到睡眠的转变中所起的作用也得到了认可,并且它被进一步认为是帕金森病中出现的步态障碍病理生理学的主要参与者。然而,在灵长类动物中尚未证实中脑运动区和觉醒中枢的存在。在此,我们在双足运动的非人灵长类动物(NHP)(食蟹猴)模型中,通过在静息和运动期间进行细胞外记录,首次对MRF进行了广泛的电生理图谱绘制。我们发现不同的神经元群体在运动时根据相位或紧张模式放电,这支持了在行为灵长类动物的这些MRF中存在运动神经元回路。总之,这些数据构成了在正常条件下行为NHP的MRF中存在的运动神经元系统的首次电生理特征描述,这与在不同实验动物模型中进行的多项研究一致。
我们首次对中脑网状结构(MRF)的两个主要组成部分,即脚桥核和楔状核进行了广泛的电生理图谱绘制。我们利用双足运动的非人灵长类动物(NHP)模型,在静息和运动期间对行为中的NHP进行细胞外记录。发现不同的MRF神经元组对运动有反应,反应模式为相位或紧张模式。这些数据构成了行为NHP的MRF中存在运动神经元系统的首个电生理证据。