Reddy Chinthala P, Rathi Yogesh
Data Analytics, Walmart ISD Bangalore, India.
Psychiatry Neuroimaging Laboratory, Harvard Medical School Boston, MA, USA.
Front Neurosci. 2016 Apr 20;10:166. doi: 10.3389/fnins.2016.00166. eCollection 2016.
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.
追踪白质纤维束是分析大脑连通性不可或缺的一部分。在多个神经科学应用中,准确估计潜在的组织参数也至关重要。在这项工作中,我们提出使用一种联合纤维模型估计和纤维束成像算法,该算法使用NODDI(神经突方向离散扩散成像)模型,沿着纤维束一致且平滑地估计纤维方向离散度,同时从扩散信号中估计细胞内和细胞外体积分数。虽然NODDI模型在早期工作中已被用于独立估计每个体素的微观结构参数,但我们首次提出将其集成到纤维束成像框架中。我们扩展了这个框架,以估计两条交叉纤维的NODDI参数,这对于穿过交叉点追踪纤维束以及分别估计每个纤维束的微观结构参数至关重要。我们建议使用无迹信息滤波器(UIF)来准确估计模型参数并进行纤维束成像。与无迹卡尔曼滤波器(UKF)相比,所提出的方法在计算性能和数值稳健性方面有显著提升。我们的方法不仅通过协方差矩阵估计估计参数的置信度,还提供状态变量(模型参数)的费舍尔信息矩阵,这对于衡量模型复杂性可能非常有用。来自体内人脑数据集的结果证明了我们的算法在穿过交叉纤维区域进行追踪的能力,同时沿着纤维束以一致的方式估计方向离散度和其他生物物理模型参数。