Suppr超能文献

使用无迹信息滤波器的联合多纤维神经突方向离散度与密度成像参数估计及纤维束成像

Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter.

作者信息

Reddy Chinthala P, Rathi Yogesh

机构信息

Data Analytics, Walmart ISD Bangalore, India.

Psychiatry Neuroimaging Laboratory, Harvard Medical School Boston, MA, USA.

出版信息

Front Neurosci. 2016 Apr 20;10:166. doi: 10.3389/fnins.2016.00166. eCollection 2016.

Abstract

Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.

摘要

追踪白质纤维束是分析大脑连通性不可或缺的一部分。在多个神经科学应用中,准确估计潜在的组织参数也至关重要。在这项工作中,我们提出使用一种联合纤维模型估计和纤维束成像算法,该算法使用NODDI(神经突方向离散扩散成像)模型,沿着纤维束一致且平滑地估计纤维方向离散度,同时从扩散信号中估计细胞内和细胞外体积分数。虽然NODDI模型在早期工作中已被用于独立估计每个体素的微观结构参数,但我们首次提出将其集成到纤维束成像框架中。我们扩展了这个框架,以估计两条交叉纤维的NODDI参数,这对于穿过交叉点追踪纤维束以及分别估计每个纤维束的微观结构参数至关重要。我们建议使用无迹信息滤波器(UIF)来准确估计模型参数并进行纤维束成像。与无迹卡尔曼滤波器(UKF)相比,所提出的方法在计算性能和数值稳健性方面有显著提升。我们的方法不仅通过协方差矩阵估计估计参数的置信度,还提供状态变量(模型参数)的费舍尔信息矩阵,这对于衡量模型复杂性可能非常有用。来自体内人脑数据集的结果证明了我们的算法在穿过交叉纤维区域进行追踪的能力,同时沿着纤维束以一致的方式估计方向离散度和其他生物物理模型参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a464/4837399/74cd4b042d7e/fnins-10-00166-g0001.jpg

相似文献

1
Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter.
Front Neurosci. 2016 Apr 20;10:166. doi: 10.3389/fnins.2016.00166. eCollection 2016.
2
Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model.
Neuroimage Clin. 2017 Jun 26;15:819-831. doi: 10.1016/j.nicl.2017.06.027. eCollection 2017.
3
A filtered approach to neural tractography using the Watson directional function.
Med Image Anal. 2010 Feb;14(1):58-69. doi: 10.1016/j.media.2009.10.003. Epub 2009 Oct 24.
4
Two-tensor tractography using a constrained filter.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):894-902. doi: 10.1007/978-3-642-04268-3_110.
5
Spatially regularized low-rank tensor approximation for accurate and fast tractography.
Neuroimage. 2023 May 1;271:120004. doi: 10.1016/j.neuroimage.2023.120004. Epub 2023 Mar 9.
6
Neural tractography using an unscented Kalman filter.
Inf Process Med Imaging. 2009;21:126-38. doi: 10.1007/978-3-642-02498-6_11.
7
Filtered multitensor tractography.
IEEE Trans Med Imaging. 2010 Sep;29(9):1664-75. doi: 10.1109/TMI.2010.2048121.
8
Tractography from HARDI using an intrinsic unscented Kalman filter.
IEEE Trans Med Imaging. 2015 Jan;34(1):298-305. doi: 10.1109/TMI.2014.2355138. Epub 2014 Sep 5.

引用本文的文献

2
Likelihood-free posterior estimation and uncertainty quantification for diffusion MRI models.
Imaging Neurosci (Camb). 2024 Feb 6;2. doi: 10.1162/imag_a_00088. eCollection 2024.
4
A comparison of diffusion tensor imaging tractography approaches to identify the Frontal Aslant Tract in neurosurgical patients.
Front Neurosci. 2025 Apr 28;19:1543032. doi: 10.3389/fnins.2025.1543032. eCollection 2025.
5
Whole-brain white matter variation across childhood environments.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2409985122. doi: 10.1073/pnas.2409985122. Epub 2025 Apr 7.
8
Altered white matter microstructural integrity in patients with postherpetic neuralgia: a combined DTI and DTI-NODDI study.
Front Neurosci. 2025 Feb 18;19:1552961. doi: 10.3389/fnins.2025.1552961. eCollection 2025.

本文引用的文献

1
Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data.
Neuroimage. 2015 Jan 15;105:32-44. doi: 10.1016/j.neuroimage.2014.10.026. Epub 2014 Oct 22.
2
On describing human white matter anatomy: the white matter query language.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):647-54. doi: 10.1007/978-3-642-40811-3_81.
3
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
4
Multi-scale characterization of white matter tract geometry.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):34-41. doi: 10.1007/978-3-642-33454-2_5.
5
NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.
Neuroimage. 2012 Jul 16;61(4):1000-16. doi: 10.1016/j.neuroimage.2012.03.072. Epub 2012 Mar 30.
6
Recent advances in diffusion MRI modeling: Angular and radial reconstruction.
Med Image Anal. 2011 Aug;15(4):369-96. doi: 10.1016/j.media.2011.02.002. Epub 2011 Feb 16.
7
Filtered multitensor tractography.
IEEE Trans Med Imaging. 2010 Sep;29(9):1664-75. doi: 10.1109/TMI.2010.2048121.
8
Two-tensor tractography using a constrained filter.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):894-902. doi: 10.1007/978-3-642-04268-3_110.
9
Local white matter geometry from diffusion tensor gradients.
Neuroimage. 2010 Feb 15;49(4):3175-86. doi: 10.1016/j.neuroimage.2009.10.073. Epub 2009 Nov 5.
10
Neural tractography using an unscented Kalman filter.
Inf Process Med Imaging. 2009;21:126-38. doi: 10.1007/978-3-642-02498-6_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验