Suppr超能文献

扩散磁共振成像模型的无似然后验估计与不确定性量化

Likelihood-free posterior estimation and uncertainty quantification for diffusion MRI models.

作者信息

Karimi Hazhar Sufi, Pal Arghya, Ning Lipeng, Rathi Yogesh

机构信息

Psychiatry Neuroimaging Laboratory (PNL), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.

出版信息

Imaging Neurosci (Camb). 2024 Feb 6;2. doi: 10.1162/imag_a_00088. eCollection 2024.

Abstract

Diffusion magnetic resonance imaging (dMRI) allows to estimate brain tissue microstructure as well as the connectivity of the white matter (known as tractography). Accurate estimation of the model parameters (by solving the inverse problem) is thus very important to infer the underlying biophysical tissue properties and fiber orientations. Although there has been extensive research on this topic with a myriad of dMRI models, most models use standard nonlinear optimization techniques and only provide an estimate of the model parameters without any information (quantification) about uncertainty in their estimation. Further, the effect of this uncertainty on the estimation of the derived dMRI microstructural measures downstream (e.g., fractional anisotropy) is often unknown and is rarely estimated. To address this issue, we first design a new deep-learning algorithm to identify the number of crossing fibers in each voxel. Then, at each voxel, we propose a robust likelihood-free deep learning method to estimate not only the mean estimate of the parameters of a multi-fiber dMRI model (e.g., the biexponential model), but also its full posterior distribution. The posterior distribution is then used to estimate the uncertainty in the model parameters as well as the derived measures. We perform several synthetic and in-vivo quantitative experiments to demonstrate the robustness of our approach for different noise levels and out-of-distribution test samples. Besides, our approach is computationally fast and requires an order of magnitude less time than standard nonlinear fitting techniques. The proposed method demonstrates much lower error (compared to existing methods) in estimating several metrics, including number of fibers in a voxel, fiber orientation, and tensor eigenvalues. The proposed methodology is quite general and can be used for the estimation of the parameters from any other dMRI model.

摘要

扩散磁共振成像(dMRI)能够估计脑组织微观结构以及白质的连通性(即纤维束成像)。因此,准确估计模型参数(通过求解逆问题)对于推断潜在的生物物理组织特性和纤维方向非常重要。尽管针对该主题已有大量研究,提出了众多dMRI模型,但大多数模型使用标准非线性优化技术,仅提供模型参数的估计值,而没有关于其估计不确定性的任何信息(量化)。此外,这种不确定性对下游派生的dMRI微观结构测量值(例如,分数各向异性)估计的影响通常未知且很少被估计。为了解决这个问题,我们首先设计了一种新的深度学习算法来识别每个体素中交叉纤维的数量。然后,在每个体素处,我们提出一种强大的无似然深度学习方法,不仅可以估计多纤维dMRI模型(例如,双指数模型)参数的均值估计,还可以估计其完整的后验分布。然后,利用后验分布来估计模型参数以及派生测量值中的不确定性。我们进行了几个合成实验和体内定量实验,以证明我们的方法在不同噪声水平和分布外测试样本下的稳健性。此外,我们的方法计算速度快,所需时间比标准非线性拟合技术少一个数量级。在估计包括体素中的纤维数量、纤维方向和张量特征值在内的几个指标时,所提出的方法(与现有方法相比)显示出低得多的误差。所提出的方法非常通用,可用于从任何其他dMRI模型估计参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229a/12224435/20fd95a563fa/imag_a_00088_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验