Suppr超能文献

大脑连接的形状可预测认知表现:一项可解释的机器学习研究。

The Shape of the Brain's Connections Is Predictive of Cognitive Performance: An Explainable Machine Learning Study.

作者信息

Lo Yui, Chen Yuqian, Liu Dongnan, Liu Wan, Zekelman Leo, Rushmore Jarrett, Zhang Fan, Rathi Yogesh, Makris Nikos, Golby Alexandra J, Cai Weidong, O'Donnell Lauren J

机构信息

Harvard Medical School, Boston, Massachusetts, USA.

Brigham and Women's Hospital, Boston, Massachusetts, USA.

出版信息

Hum Brain Mapp. 2025 Apr 1;46(5):e70166. doi: 10.1002/hbm.70166.

Abstract

The shape of the brain's white matter connections is relatively unexplored in diffusion magnetic resonance imaging (dMRI) tractography analysis. While it is known that tract shape varies in populations and across the human lifespan, it is unknown if the variability in dMRI tractography-derived shape may relate to the brain's functional variability across individuals. This work explores the potential of leveraging tractography fiber cluster shape measures to predict subject-specific cognitive performance. We implement two machine learning models (1D-CNN and Least Absolute Shrinkage and Selection Operator [LASSO]) to predict individual cognitive performance scores. We study a large-scale database from the Human Connectome Project Young Adult study (n = 1065). We apply an atlas-based fiber cluster parcellation (953 fiber clusters) to the dMRI tractography of each individual. We compute 15 shape, microstructure, and connectivity features for each fiber cluster. Using these features as input, we train a total of 210 models (using fivefold cross-validation) to predict 7 different NIH Toolbox cognitive performance assessments. We apply an explainable AI technique, SHapley Additive exPlanations (SHAP), to assess the importance of each fiber cluster for prediction. Our results demonstrate that fiber cluster shape measures are predictive of individual cognitive performance. The studied shape measures, such as irregularity, diameter, total surface area, volume, and branch volume, are generally as effective for prediction as traditional microstructure and connectivity measures. The 1D-CNN model generally outperforms the LASSO method for prediction. Further interpretation and analysis using SHAP values from the 1D-CNN suggest that fiber clusters with features highly predictive of cognitive ability are widespread throughout the brain, including fiber clusters from the superficial association, deep association, cerebellar, striatal, and projection pathways. This study demonstrates the strong potential of shape descriptors to enhance the study of the brain's white matter and its relationship to cognitive function.

摘要

在扩散磁共振成像(dMRI)纤维束成像分析中,大脑白质连接的形状相对未被充分探索。虽然已知纤维束形状在不同人群和人类生命周期中会有所变化,但尚不清楚dMRI纤维束成像得出的形状变异性是否与个体大脑的功能变异性相关。这项工作探索了利用纤维束成像纤维簇形状测量来预测个体特定认知表现的潜力。我们实现了两种机器学习模型(一维卷积神经网络[1D-CNN]和最小绝对收缩和选择算子[LASSO])来预测个体认知表现分数。我们研究了来自人类连接组计划青年成人研究的一个大规模数据库(n = 1065)。我们将基于图谱的纤维簇分割(953个纤维簇)应用于每个个体的dMRI纤维束成像。我们为每个纤维簇计算15个形状、微观结构和连接性特征。以这些特征作为输入,我们总共训练了210个模型(使用五折交叉验证)来预测7种不同的美国国立卫生研究院工具箱认知表现评估。我们应用一种可解释人工智能技术,即夏普利值加法解释(SHAP),来评估每个纤维簇对预测的重要性。我们的结果表明,纤维簇形状测量能够预测个体认知表现。所研究的形状测量,如不规则性、直径、总表面积、体积和分支体积,在预测方面通常与传统的微观结构和连接性测量一样有效。1D-CNN模型在预测方面通常优于LASSO方法。使用来自1D-CNN的SHAP值进行的进一步解释和分析表明,具有高度预测认知能力特征的纤维簇广泛分布于整个大脑,包括来自表层联合、深层联合、小脑、纹状体和投射通路的纤维簇。这项研究证明了形状描述符在加强大脑白质及其与认知功能关系研究方面的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bae/11947434/66a5310836c7/HBM-46-e70166-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验