Atanasova-Penichon Vessela, Barreau Christian, Richard-Forget Florence
MycSA, Institut National de la Recherche Agronomique Villenave d'Ornon, France.
Front Microbiol. 2016 Apr 22;7:566. doi: 10.3389/fmicb.2016.00566. eCollection 2016.
Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.
赤霉病和镰刀菌穗腐病以及镰刀菌头腐病是影响欧洲谷物的主要病害。这些病害主要由镰刀菌属真菌引起,主要是禾谷镰刀菌和轮枝镰刀菌。这些镰刀菌物种对食品安全构成严重威胁,因为它们能够产生多种霉菌毒素,包括B型单端孢霉烯族毒素和伏马毒素。许多因素,如环境、农艺或遗传因素,可能导致谷物中霉菌毒素的高水平积累,因此迫切需要实施高效且可持续的管理策略以减少霉菌毒素污染。实际上,杀菌剂在控制霉菌毒素风险方面并不完全有效。此外,由于对人类健康和环境的有害影响,其使用在不久的将来应受到严格限制。为了持久解决霉菌毒素积累问题,培育耐性基因型是谷物最有前景的策略之一。深入了解植物对镰刀菌和霉菌毒素污染的抗性分子机制将有助于揭示植物与病原体的相互作用,并为改进育种计划提供相关信息。对镰刀菌的抗性取决于植物预防初始感染和抑制产毒真菌生长的能力,而对霉菌毒素污染的抗性也与植物组织减少霉菌毒素积累的能力有关。这种能力可由两种机制产生:将毒素代谢转化为毒性较小的化合物以及抑制毒素生物合成。后一种机制涉及能够干扰霉菌毒素生物合成的宿主代谢产物。本综述旨在收集最新的科学进展,这些进展支持谷物抗氧化次生代谢产物对植物抗镰刀菌和霉菌毒素积累机制的贡献。