Suppr超能文献

以配体为中心的靶点筛选方法有多可靠?

How Reliable Are Ligand-Centric Methods for Target Fishing?

作者信息

Peón Antonio, Dang Cuong C, Ballester Pedro J

机构信息

Cancer Research Center of Marseille (Institut National de la Santé et de la Recherche Médicale U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique UMR7258) Marseille, France.

出版信息

Front Chem. 2016 Apr 14;4:15. doi: 10.3389/fchem.2016.00015. eCollection 2016.

Abstract

Computational methods for Target Fishing (TF), also known as Target Prediction or Polypharmacology Prediction, can be used to discover new targets for small-molecule drugs. This may result in repositioning the drug in a new indication or improving our current understanding of its efficacy and side effects. While there is a substantial body of research on TF methods, there is still a need to improve their validation, which is often limited to a small part of the available targets and not easily interpretable by the user. Here we discuss how target-centric TF methods are inherently limited by the number of targets that can possibly predict (this number is by construction much larger in ligand-centric techniques). We also propose a new benchmark to validate TF methods, which is particularly suited to analyse how predictive performance varies with the query molecule. On average over approved drugs, we estimate that only five predicted targets will have to be tested to find two true targets with submicromolar potency (a strong variability in performance is however observed). In addition, we find that an approved drug has currently an average of eight known targets, which reinforces the notion that polypharmacology is a common and strong event. Furthermore, with the assistance of a control group of randomly-selected molecules, we show that the targets of approved drugs are generally harder to predict. The benchmark and a simple target prediction method to use as a performance baseline are available at http://ballester.marseille.inserm.fr/TF-benchmark.tar.gz.

摘要

靶点搜寻(TF)的计算方法,也被称为靶点预测或多药理学预测,可用于发现小分子药物的新靶点。这可能会使药物在新适应症中重新定位,或者增进我们目前对其疗效和副作用的理解。虽然关于TF方法已有大量研究,但仍需改进其验证方法,目前的验证往往局限于可用靶点的一小部分,且用户难以理解。在此,我们讨论以靶点为中心的TF方法如何受到可能预测的靶点数量的固有限制(在以配体为中心的技术中,这个数量在构建时要大得多)。我们还提出了一种用于验证TF方法的新基准,它特别适合分析预测性能如何随查询分子而变化。对于已批准的药物,我们估计平均只需测试五个预测靶点就能找到两个具有亚微摩尔效力的真实靶点(不过性能存在很大差异)。此外,我们发现一种已批准的药物目前平均有八个已知靶点,这强化了多药理学是一个常见且显著现象的观点。此外,借助一组随机选择分子作为对照组,我们表明已批准药物的靶点通常更难预测。该基准以及一种用作性能基线的简单靶点预测方法可在http://ballester.marseille.inserm.fr/TF-benchmark.tar.gz获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb7c/4830838/f97a9287aa0a/fchem-04-00015-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验