Suppr超能文献

通过酶的结构和功能研究生命系统中的信息动态。

Investigating Information Dynamics in Living Systems through the Structure and Function of Enzymes.

作者信息

Gatenby Robert, Frieden B Roy

机构信息

Departments of Integrated Mathematical Oncology and Radiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America.

College of Optical Sciences, University of Arizona, Tucson, AZ 85721, United States of America.

出版信息

PLoS One. 2016 May 5;11(5):e0154867. doi: 10.1371/journal.pone.0154867. eCollection 2016.

Abstract

Enzymes are proteins that accelerate intracellular chemical reactions often by factors of 105-1012s-1. We propose the structure and function of enzymes represent the thermodynamic expression of heritable information encoded in DNA with post-translational modifications that reflect intra- and extra-cellular environmental inputs. The 3 dimensional shape of the protein, determined by the genetically-specified amino acid sequence and post translational modifications, permits geometric interactions with substrate molecules traditionally described by the key-lock best fit model. Here we apply Kullback-Leibler (K-L) divergence as metric of this geometric "fit" and the information content of the interactions. When the K-L 'distance' between interspersed substrate pn and enzyme rn positions is minimized, the information state, reaction probability, and reaction rate are maximized. The latter obeys the Arrhenius equation, which we show can be derived from the geometrical principle of minimum K-L distance. The derivation is first limited to optimum substrate positions for fixed sets of enzyme positions. However, maximally improving the key/lock fit, called 'induced fit,' requires both sets of positions to be varied optimally. We demonstrate this permits and is maximally efficient if the key and lock particles pn, rn are quantum entangled because the level of entanglement obeys the same minimized value of the Kullback-Leibler distance that occurs when all pn ≈ rn. This implies interchanges pn ⇄ brn randomly taking place during a reaction successively improves key/lock fits, reducing the activation energy Ea and increasing the reaction rate k. Our results demonstrate the summation of heritable and environmental information that determines the enzyme spatial configuration, by decreasing the K-L divergence, is converted to thermodynamic work by reducing Ea and increasing k of intracellular reactions. Macroscopically, enzyme information increases the order in living systems, similar to the Maxwell demon gedanken, by selectively accelerating specific reaction thus generating both spatial and temporal concentration gradients.

摘要

酶是蛋白质,它们通常能将细胞内化学反应的速度提高10^5 - 10^12倍。我们提出,酶的结构和功能代表了DNA中编码的可遗传信息的热力学表达,其翻译后修饰反映了细胞内和细胞外的环境输入。蛋白质的三维形状由基因指定的氨基酸序列和翻译后修饰决定,允许与底物分子进行几何相互作用,传统上用钥匙-锁最佳匹配模型来描述。在这里,我们应用库尔贝克-莱布勒(K-L)散度作为这种几何“匹配”和相互作用信息含量的度量。当散布的底物pn和酶rn位置之间的K-L“距离”最小时,信息状态、反应概率和反应速率最大。后者服从阿伦尼乌斯方程,我们表明该方程可以从最小K-L距离的几何原理推导出来。推导首先限于固定酶位置集的最佳底物位置。然而,最大程度地改善钥匙/锁匹配,即所谓的“诱导契合”,需要两组位置都进行最佳变化。我们证明,如果钥匙和锁粒子pn、rn是量子纠缠的,这是可行的且效率最高,因为纠缠程度服从当所有pn≈rn时出现的相同最小化库尔贝克-莱布勒距离值。这意味着在反应过程中随机发生的pn⇄brn互换会相继改善钥匙/锁匹配,降低活化能Ea并提高反应速率k。我们的结果表明,通过降低K-L散度来确定酶空间构型的可遗传信息和环境信息的总和,通过降低Ea和提高细胞内反应的k,转化为热力学功。从宏观上看,酶信息增加了生命系统的有序性,类似于麦克斯韦妖思想实验,通过选择性地加速特定反应从而产生空间和时间浓度梯度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadd/4857929/b29a705bc128/pone.0154867.g001.jpg

相似文献

1
Investigating Information Dynamics in Living Systems through the Structure and Function of Enzymes.
PLoS One. 2016 May 5;11(5):e0154867. doi: 10.1371/journal.pone.0154867. eCollection 2016.
2
Converting genetic information to non-equilibrium cellular thermodynamics in enzyme-catalyzed reactions.
bioRxiv. 2023 Sep 17:2023.09.15.557926. doi: 10.1101/2023.09.15.557926.
4
Chained Kullback-Leibler Divergences.
Proc IEEE Int Symp Info Theory. 2016 Jul;2016:580-584. doi: 10.1109/ISIT.2016.7541365. Epub 2016 Aug 11.
5
Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
Adv Protein Chem Struct Biol. 2011;85:81-142. doi: 10.1016/B978-0-12-386485-7.00003-X.
7
A Design Principle for an Autonomous Post-translational Pattern Formation.
Cell Rep. 2017 Apr 25;19(4):863-874. doi: 10.1016/j.celrep.2017.03.081.
9
Some Order Preserving Inequalities for Cross Entropy and Kullback-Leibler Divergence.
Entropy (Basel). 2018 Dec 12;20(12):959. doi: 10.3390/e20120959.
10
Powering Motion with Enzymes.
Acc Chem Res. 2018 Oct 16;51(10):2373-2381. doi: 10.1021/acs.accounts.8b00286. Epub 2018 Sep 26.

引用本文的文献

1
Modeling non-genetic information dynamics in cells using reservoir computing.
iScience. 2024 Mar 28;27(4):109614. doi: 10.1016/j.isci.2024.109614. eCollection 2024 Apr 19.
2
DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration.
Nat Commun. 2023 Nov 23;14(1):7675. doi: 10.1038/s41467-023-43558-8.
6
Omnipresent Maxwell's demons orchestrate information management in living cells.
Microb Biotechnol. 2019 Mar;12(2):210-242. doi: 10.1111/1751-7915.13378.
7
Cellular information dynamics through transmembrane flow of ions.
Sci Rep. 2017 Nov 8;7(1):15075. doi: 10.1038/s41598-017-15182-2.

本文引用的文献

1
Principle of maximum Fisher information from Hardy's axioms applied to statistical systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042144. doi: 10.1103/PhysRevE.88.042144. Epub 2013 Oct 28.
2
Cell development obeys maximum Fisher information.
Front Biosci (Elite Ed). 2013 Jun 1;5(3):1017-32. doi: 10.2741/e681.
3
Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding.
Wiley Interdiscip Rev Syst Biol Med. 2012 Nov-Dec;4(6):565-83. doi: 10.1002/wsbm.1185. Epub 2012 Aug 15.
4
Work and information processing in a solvable model of Maxwell's demon.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11641-5. doi: 10.1073/pnas.1204263109. Epub 2012 Jul 2.
5
Order in a multidimensional system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011128. doi: 10.1103/PhysRevE.84.011128. Epub 2011 Jul 19.
6
Information dynamics in living systems: prokaryotes, eukaryotes, and cancer.
PLoS One. 2011;6(7):e22085. doi: 10.1371/journal.pone.0022085. Epub 2011 Jul 19.
7
Update 1 of: Tunneling and dynamics in enzymatic hydride transfer.
Chem Rev. 2010 Dec 8;110(12):PR41-67. doi: 10.1021/cr1001035.
8
Computational biochemistry: old enzymes, new tricks.
Nature. 2008 May 8;453(7192):164-6. doi: 10.1038/453164a.
9
Information theory in living systems, methods, applications, and challenges.
Bull Math Biol. 2007 Feb;69(2):635-57. doi: 10.1007/s11538-006-9141-5. Epub 2006 Nov 3.
10
Tunneling and dynamics in enzymatic hydride transfer.
Chem Rev. 2006 Aug;106(8):3095-118. doi: 10.1021/cr050301x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验