Suppr超能文献

利用原位 NMR 光谱法对用于细胞培养的微流控装置中的氧气渗透进行特性描述。

Characterisation of oxygen permeation into a microfluidic device for cell culture by in situ NMR spectroscopy.

机构信息

School of Chemistry, University of Southampton, SO17 1BJ, UK.

出版信息

Lab Chip. 2016 May 24;16(11):2079-85. doi: 10.1039/c6lc00396f.

Abstract

A compact microfluidic device for perfusion culture of mammalian cells under in situ metabolomic observation by NMR spectroscopy is presented. The chip is made from poly(methyl methacrylate) (PMMA), and uses a poly(dimethyl siloxane) (PDMS) membrane to allow gas exchange. It is integrated with a generic micro-NMR detector developed recently by our group [J. Magn. Reson., 2016, 262, 73-80]. While PMMA is an excellent material in the context of NMR, PDMS is known to produce strong background signals. To mitigate this, the device keeps the PDMS away from the detection area. The oxygen permeation into the device is quantified using a flow chemistry approach. A solution of glucose is mixed on the chip with a solution of glucose oxidase, before flowing through the gas exchanger. The resulting concentration of gluconate is measured by (1)H NMR spectroscopy as a function of flow rate. An oxygen equilibration rate constant of 2.4 s(-1) is found for the device, which is easily sufficient to maintain normoxic conditions in a cell culture at low perfusion flow rates.

摘要

本文介绍了一种用于在原位代谢组学观察下通过 NMR 光谱对哺乳动物细胞进行灌注培养的微型流控装置。该芯片由聚甲基丙烯酸甲酯 (PMMA) 制成,并使用聚二甲基硅氧烷 (PDMS) 膜来实现气体交换。它与我们小组最近开发的通用微 NMR 检测器集成在一起[J. Magn. Reson.,2016,262,73-80]。虽然 PMMA 在 NMR 方面是一种极好的材料,但 PDMS 已知会产生强烈的背景信号。为了减轻这种影响,该装置将 PDMS 远离检测区域。通过流动化学方法定量测量氧气渗透到装置中的情况。在芯片上将葡萄糖溶液与葡萄糖氧化酶溶液混合,然后流过气体交换器。通过(1)H NMR 光谱测量作为流速函数的葡糖酸盐的浓度。该装置的氧平衡速率常数为 2.4 s(-1),这足以在低灌注流速下维持细胞培养中的正常氧条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验