Suppr超能文献

稀疏群组因子分析用于多数据源的双向聚类。

Sparse group factor analysis for biclustering of multiple data sources.

机构信息

Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland.

出版信息

Bioinformatics. 2016 Aug 15;32(16):2457-63. doi: 10.1093/bioinformatics/btw207. Epub 2016 Apr 19.

Abstract

MOTIVATION

Modelling methods that find structure in data are necessary with the current large volumes of genomic data, and there have been various efforts to find subsets of genes exhibiting consistent patterns over subsets of treatments. These biclustering techniques have focused on one data source, often gene expression data. We present a Bayesian approach for joint biclustering of multiple data sources, extending a recent method Group Factor Analysis to have a biclustering interpretation with additional sparsity assumptions. The resulting method enables data-driven detection of linear structure present in parts of the data sources.

RESULTS

Our simulation studies show that the proposed method reliably infers biclusters from heterogeneous data sources. We tested the method on data from the NCI-DREAM drug sensitivity prediction challenge, resulting in an excellent prediction accuracy. Moreover, the predictions are based on several biclusters which provide insight into the data sources, in this case on gene expression, DNA methylation, protein abundance, exome sequence, functional connectivity fingerprints and drug sensitivity.

AVAILABILITY AND IMPLEMENTATION

http://research.cs.aalto.fi/pml/software/GFAsparse/

CONTACTS

: kerstin.bunte@googlemail.com or samuel.kaski@aalto.fi.

摘要

动机

随着当前基因组数据量的不断增加,需要有能够在数据中找到结构的建模方法,因此人们已经做出了各种努力来寻找在处理子集上表现出一致模式的基因子集。这些双聚类技术主要集中在一个数据源上,通常是基因表达数据。我们提出了一种联合多源双聚类的贝叶斯方法,该方法扩展了最近的 Group Factor Analysis 方法,具有双聚类解释和附加稀疏性假设。所得到的方法能够以数据驱动的方式检测数据源中部分线性结构的存在。

结果

我们的模拟研究表明,所提出的方法可以从异构数据源中可靠地推断出双聚类。我们在 NCI-DREAM 药物敏感性预测挑战的数据上测试了该方法,结果得到了非常高的预测准确性。此外,这些预测是基于几个双聚类得到的,这为数据提供了深入的见解,在这种情况下,是关于基因表达、DNA 甲基化、蛋白质丰度、外显子序列、功能连接指纹和药物敏感性。

可用性和实现

http://research.cs.aalto.fi/pml/software/GFAsparse/

联系人

kerstin.bunte@googlemail.comsamuel.kaski@aalto.fi

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验