Fan Sisi, Geissmann Quentin, Lakatos Eszter, Lukauskas Saulius, Ale Angelique, Babtie Ann C, Kirk Paul D W, Stumpf Michael P H
Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
MRC Biostatistics Unit, Cambridge CB2 0SR, UK.
Bioinformatics. 2016 Sep 15;32(18):2863-5. doi: 10.1093/bioinformatics/btw229. Epub 2016 May 5.
Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system's moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems.
We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis.
https://github.com/theosysbio/means
m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk
Supplementary data are available at Bioinformatics online.
许多生化系统需要随机描述。不幸的是,这些描述仅适用于最简单的情况,并且其直接模拟可能变得极其昂贵,从而排除了深入分析的可能性。作为一种替代方法,矩封闭近似方法生成系统矩随时间演化的方程,并应用封闭假设来获得一组封闭的微分方程;这可以成为对随机系统输出的矩进行确定性分析的基础。
我们展示了一个免费的、用户友好的工具,它实现了一种带有参数封闭的高效矩展开近似,并且能与IPython交互环境良好集成。我们的软件包能够分析复杂的随机系统,而对所研究的物种数量、矩以及系统中的速率定律类型没有任何限制。除了近似方法之外,我们的软件包还提供了许多工具来帮助非专业用户进行随机分析。
https://github.com/theosysbio/means
m.stumpf@imperial.ac.uk 或 e.lakatos13@imperial.ac.uk
补充数据可在《生物信息学》在线获取。