Suppr超能文献

高效模拟生化系统中的固有、外在和外部噪声。

Efficient simulation of intrinsic, extrinsic and external noise in biochemical systems.

机构信息

Otto-von-Guericke-University Magdeburg, Process Systems Engineering, Magdeburg, Germany.

Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Magdeburg, Germany.

出版信息

Bioinformatics. 2017 Jul 15;33(14):i319-i324. doi: 10.1093/bioinformatics/btx253.

Abstract

MOTIVATION

Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most biochemical systems, approximate methods are used to obtain a solution.

RESULTS

In this study, a method to efficiently simulate the various sources of noise simultaneously is proposed and benchmarked on several examples. The method relies on the combination of the sigma point approach to describe extrinsic and external variability and the τ -leaping algorithm to account for the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo calculations demonstrates an immense computational advantage while losing an acceptable amount of accuracy. Additionally, the application to parameter optimization problems in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge computational burden. To give further insight, a MATLAB script is provided including the proposed method applied to a simple toy example of gene expression.

AVAILABILITY AND IMPLEMENTATION

MATLAB code is available at Bioinformatics online.

CONTACT

flassig@mpi-magdeburg.mpg.de.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

生物细胞在受内在、外在和外部噪声影响的嘈杂环境中运作,这导致个体细胞状态存在很大差异。为了准确描述生化动力学,必须考虑随机效应。由于无法为大多数生化系统推导出控制基础随机过程的化学主方程的精确解,因此使用近似方法来获得解。

结果

在这项研究中,提出了一种同时有效地模拟各种噪声源的方法,并在几个示例中进行了基准测试。该方法依赖于 sigma 点方法来描述外在和外部可变性,以及 τ -跳跃算法来解释由于概率反应引起的随机性。与广泛的蒙特卡罗计算的比较表明,该方法具有巨大的计算优势,同时又不失可接受的准确性。此外,还展示了随机生化反应网络中的参数优化问题的应用,由于其巨大的计算负担,很少应用于该问题。为了提供进一步的见解,提供了一个 MATLAB 脚本,其中包括应用于基因表达的简单玩具示例的所提出的方法。

可用性和实现

MATLAB 代码可在 Bioinformatics 在线获取。

联系人

flassig@mpi-magdeburg.mpg.de

补充信息

补充数据可在 Bioinformatics 在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa3/5870780/a95f7b223130/btx253f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验