Massachusetts Institute of Technology, EECS Department, Room 13-3029, Cambridge, USA.
IET Syst Biol. 2011 Nov;5(6):325-35. doi: 10.1049/iet-syb.2011.0013.
The mass fluctuation kinetics (MFK) model is a set of coupled ordinary differential equations approximating the time evolution of means and covariances of species concentrations in chemical reaction networks. It generalises classical mass action kinetics (MAK), in which fluctuations around the mean are ignored. MFK may be used to approximate stochasticity in system trajectories when stochastic simulation methods are prohibitively expensive computationally. This study presents a set of tools to aid in the analysis of systems within the MFK framework. A closed-form expression for the MFK Jacobian matrix is derived. This expression facilitates the computation of MFK equilibria and the characterisation of the dynamics of small deviations from the equilibria (i.e. local dynamics). Software developed in MATLAB to analyse systems within the MFK framework is also presented. The authors outline a homotopy continuation method that employs the Jacobian for bifurcation analysis, that is, to generate a locus of steady-state Jacobian eigenvalues corresponding to changing a chosen MFK parameter such as system volume or a rate constant. This method is applied to study the effect of small-volume stochasticity on local dynamics at equilibria in a pair of example systems, namely the formation and dissociation of an enzyme-substrate complex and a genetic oscillator. For both systems, this study reveals volume regimes where MFK provides a quantitatively and/or qualitatively correct description of system behaviour, and regimes where the MFK approximation is inaccurate. Moreover, our analysis provides evidence that decreasing volume from the MAK regime (infinite volume) has a destabilising effect on system dynamics.
质量波动动力学(MFK)模型是一组耦合的常微分方程,用于近似化学反应网络中物种浓度的均值和协方差的时间演化。它推广了经典的质量作用动力学(MAK),其中忽略了均值周围的波动。当随机模拟方法在计算上过于昂贵时,MFK 可用于近似系统轨迹中的随机性。本研究提出了一组工具,以帮助在 MFK 框架内分析系统。推导出了 MFK 雅可比矩阵的封闭形式表达式。该表达式便于计算 MFK 平衡点和小偏差动力学的特征(即局部动力学)。还介绍了一种在 MATLAB 中开发的用于分析 MFK 框架内系统的软件。作者概述了一种同伦连续方法,该方法使用雅可比矩阵进行分叉分析,即生成对应于改变所选 MFK 参数(例如系统体积或速率常数)的稳态雅可比特征值的轨迹。该方法应用于研究小体积随机性对两个示例系统中平衡点局部动力学的影响,即酶-底物复合物的形成和解离以及遗传振荡器。对于这两个系统,本研究揭示了 MFK 提供系统行为定量和/或定性正确描述的体积范围,以及 MFK 近似不准确的范围。此外,我们的分析提供了证据表明,从 MAK 范围(无限体积)减小体积对系统动力学具有不稳定性。