Suppr超能文献

探讨在同时进行 fMRI 时获取的 EEG 数据中运动伪影校正技术的相对功效。

Exploring the relative efficacy of motion artefact correction techniques for EEG data acquired during simultaneous fMRI.

机构信息

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.

Department of Physics, Loughborough University, Leicestershire, United Kingdom.

出版信息

Hum Brain Mapp. 2019 Feb 1;40(2):578-596. doi: 10.1002/hbm.24396. Epub 2018 Oct 19.

Abstract

Simultaneous EEG-fMRI allows multiparametric characterisation of brain function, in principle enabling a more complete understanding of brain responses; unfortunately the hostile MRI environment severely reduces EEG data quality. Simply eliminating data segments containing gross motion artefacts [MAs] (generated by movement of the EEG system and head in the MRI scanner's static magnetic field) was previously believed sufficient. However recently the importance of removal of all MAs has been highlighted and new methods developed. A systematic comparison of the ability to remove MAs and retain underlying neuronal activity using different methods of MA detection and post-processing algorithms is needed to guide the neuroscience community. Using a head phantom, we recorded MAs while simultaneously monitoring the motion using three different approaches: Reference Layer Artefact Subtraction (RLAS), Moiré Phase Tracker (MPT) markers and Wire Loop Motion Sensors (WLMS). These EEG recordings were combined with EEG responses to simple visual tasks acquired on a subject outside the MRI environment. MAs were then corrected using the motion information collected with each of the methods combined with different analysis pipelines. All tested methods retained the neuronal signal. However, often the MA was not removed sufficiently to allow accurate detection of the underlying neuronal signal. We show that the MA is best corrected using the RLAS combined with post-processing using a multichannel, recursive least squares (M-RLS) algorithm. This method needs to be developed further to enable practical utility; thus, WLMS combined with M-RLS currently provides the best compromise between EEG data quality and practicalities of motion detection.

摘要

同时进行的 EEG-fMRI 允许对大脑功能进行多参数特征描述,原则上可以更全面地了解大脑反应;但不幸的是,恶劣的 MRI 环境会严重降低 EEG 数据的质量。以前,人们认为仅仅消除包含明显运动伪影(由 EEG 系统和头部在 MRI 扫描仪的静磁场中运动产生)的数据段就足够了。然而,最近人们已经强调了消除所有运动伪影的重要性,并开发了新的方法。需要对使用不同的运动伪影检测方法和后处理算法来去除运动伪影和保留潜在的神经元活动的能力进行系统比较,以指导神经科学界。我们使用头部模型,通过三种不同的方法同时记录运动伪影:参考层伪影减法(Reference Layer Artefact Subtraction,RLAS)、莫尔相位跟踪器(Moiré Phase Tracker,MPT)标记和线环运动传感器(Wire Loop Motion Sensors,WLMS)。将这些 EEG 记录与在 MRI 环境之外的受试者身上获得的简单视觉任务的 EEG 反应结合起来。然后,使用每种方法收集的运动信息并结合不同的分析管道,对运动伪影进行校正。所有测试的方法都保留了神经元信号。然而,通常运动伪影并没有被充分去除,无法准确检测到潜在的神经元信号。我们表明,使用 RLAS 结合多通道递归最小二乘法(multichannel recursive least squares,M-RLS)算法进行后处理,可以很好地校正运动伪影。这种方法需要进一步开发,以实现实际应用;因此,WLMS 结合 M-RLS 目前在 EEG 数据质量和运动检测的实用性之间提供了最佳折衷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e302/6865447/8cf1708b91f7/HBM-40-578-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验