VU University Medical Center, Dept. of PMT, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
Neuroimage. 2013 Jan 1;64:407-15. doi: 10.1016/j.neuroimage.2012.09.022. Epub 2012 Sep 17.
Co-registered EEG and functional MRI (EEG/fMRI) is a potential clinical tool for planning invasive EEG in patients with epilepsy. In addition, the analysis of EEG/fMRI data provides a fundamental insight into the precise physiological meaning of both fMRI and EEG data. Routine application of EEG/fMRI for localization of epileptic sources is hampered by large artefacts in the EEG, caused by switching of scanner gradients and heartbeat effects. Residuals of the ballistocardiogram (BCG) artefacts are similarly shaped as epileptic spikes, and may therefore cause false identification of spikes. In this study, new ideas and methods are presented to remove gradient artefacts and to reduce BCG artefacts of different shapes that mutually overlap in time. Gradient artefacts can be removed efficiently by subtracting an average artefact template when the EEG sampling frequency and EEG low-pass filtering are sufficient in relation to MR gradient switching (Gonçalves et al., 2007). When this is not the case, the gradient artefacts repeat themselves at time intervals that depend on the remainder between the fMRI repetition time and the closest multiple of the EEG acquisition time. These repetitions are deterministic, but difficult to predict due to the limited precision by which these timings are known. Therefore, we propose to estimate gradient artefact repetitions using a clustering algorithm, combined with selective averaging. Clustering of the gradient artefacts yields cleaner EEG for data recorded during scanning of a 3T scanner when using a sampling frequency of 2048 Hz. It even gives clean EEG when the EEG is sampled with only 256 Hz. Current BCG artefacts-reduction algorithms based on average template subtraction have the intrinsic limitation that they fail to deal properly with artefacts that overlap in time. To eliminate this constraint, the precise timings of artefact overlaps were modelled and represented in a sparse matrix. Next, the artefacts were disentangled with a least squares procedure. The relevance of this approach is illustrated by determining the BCG artefacts in a data set consisting of 29 healthy subjects recorded in a 1.5 T scanner and 15 patients with epilepsy recorded in a 3 T scanner. Analysis of the relationship between artefact amplitude, duration and heartbeat interval shows that in 22% (1.5T data) to 30% (3T data) of the cases BCG artefacts show an overlap. The BCG artefacts of the EEG/fMRI data recorded on the 1.5T scanner show a small negative correlation between HBI and BCG amplitude. In conclusion, the proposed methodology provides a substantial improvement of the quality of the EEG signal without excessive computer power or additional hardware than standard EEG-compatible equipment.
脑电与功能磁共振(EEG/fMRI)配准是一种有潜力的临床工具,可用于规划癫痫患者的侵入性脑电。此外,EEG/fMRI 数据分析为 fMRI 和 EEG 数据的精确生理意义提供了基本的见解。由于扫描仪梯度切换和心跳效应引起的脑电中的大伪影,EEG/fMRI 常规用于癫痫源定位受到阻碍。心冲击图(BCG)伪影的残余与癫痫尖峰的形状相似,因此可能导致尖峰的错误识别。在这项研究中,提出了新的想法和方法来去除梯度伪影,并减少时间上相互重叠的不同形状的 BCG 伪影。当 EEG 采样频率和 EEG 低通滤波相对于 MR 梯度切换足够时(Gonçalves 等人,2007),可以通过减去平均伪影模板来有效地去除梯度伪影。当这种情况不成立时,梯度伪影会在取决于 fMRI 重复时间和 EEG 采集时间最接近倍数之间的余数的时间间隔内重复出现。这些重复是确定性的,但由于这些定时的精度有限,因此难以预测。因此,我们建议使用聚类算法和选择性平均来估计梯度伪影重复。在使用 2048 Hz 采样频率对 3T 扫描仪进行扫描时,梯度伪影的聚类为记录的数据提供了更清洁的 EEG。当 EEG 仅以 256 Hz 采样时,它甚至可以提供干净的 EEG。基于平均模板相减的当前 BCG 伪影减少算法具有内在的局限性,即它们不能正确处理时间重叠的伪影。为了消除这种限制,精确地对伪影重叠的时间进行建模并表示在稀疏矩阵中。接下来,使用最小二乘程序对伪影进行解缠。通过确定在由 29 名健康受试者在 1.5 T 扫描仪上记录的数据集中和 15 名癫痫患者在 3 T 扫描仪上记录的数据集中的 BCG 伪影来证明这种方法的相关性。对伪影幅度、持续时间和心跳间隔之间的关系进行分析表明,在 22%(1.5T 数据)到 30%(3T 数据)的情况下,BCG 伪影存在重叠。在 1.5T 扫描仪上记录的 EEG/fMRI 数据的 BCG 伪影显示 HBI 和 BCG 幅度之间存在小的负相关。总之,所提出的方法在不使用标准 EEG 兼容设备的额外计算机功率或硬件的情况下,大大提高了 EEG 信号的质量。