Cai Qiang, Wang Long, Deng Gang, Liu Junhui, Chen Qianxue, Chen Zhibiao
Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei Province, China.
Am J Transl Res. 2016 Feb 15;8(2):749-64. eCollection 2016.
Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications.
神经疾病是一个重要的全球公共卫生问题,但由于血脑屏障(BBB)限制药物进入中枢神经系统,药物治疗受到限制。聚乳酸-羟基乙酸共聚物(PLGA)纳米颗粒(NPs)是最有希望跨越血脑屏障的药物和基因递送系统之一。虽然这些系统前景广阔,但PLGA NPs也有一些内在缺点,需要进一步改造以用于临床和研究应用。已经开发了多种使用PLGA NPs跨血脑屏障递送化合物的策略。我们根据对PLGA NPs所做的改造将这些策略分为三类:(1)促进从注射部位运输(转胞吞前策略);(2)增强穿过脑内皮细胞的能力(血脑屏障转胞吞策略);(3)实现对受损神经细胞的靶向(转胞吞后策略)。根据这三种策略修饰的PLGA NPs分别称为第一代、第二代和第三代NPs。我们认为,融合这三种策略来设计多功能PLGA NPs是实现转化应用的唯一途径。