Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Spin Engineering Physics Team, Korea Basic Science Institute (KBSI), Daejeon 305-806, Korea.
Nat Commun. 2016 May 10;7:11504. doi: 10.1038/ncomms11504.
The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.
范德华异质结构由石墨烯、金属二卤化物和其他层状材料组成,其成功取决于对界面电荷转移的理解,这是新器件概念和应用的基础。与传统异质结构不同,传统异质结构中强界面耦合对于电荷转移至关重要,最近的实验结果表明,尽管这些异质结构结合较弱,但范德华异质结构仍可以表现出超快的电荷转移。在这里,我们使用含时密度泛函理论分子动力学发现,界面处激子的集体运动导致与光激发相关的等离子体振荡。通过构建范德华异质结构的简单模型,我们表明存在着振荡的意想不到的临界点,从而导致界面处的快速电荷转移。将其应用于 MoS2/WS2 异质结构,与实验结果吻合良好,表明在 100fs 的时间尺度内几乎完全发生电荷转移。