Li Song, Thiering Gergő, Udvarhelyi Péter, Ivády Viktor, Gali Adam
Wigner Research Centre for Physics, P.O. Box 49, Budapest, H-1525, Hungary.
Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
Nat Commun. 2022 Mar 8;13(1):1210. doi: 10.1038/s41467-022-28876-7.
Identifying and fabricating defect qubits in two-dimensional semiconductors are of great interest in exploring candidates for quantum information and sensing applications. A milestone has been recently achieved by demonstrating that single defect, a carbon atom substituting sulphur atom in single layer tungsten disulphide, can be engineered on demand at atomic size level precision, which holds a promise for a scalable and addressable unit. It is an immediate quest to reveal its potential as a qubit. To this end, we determine its electronic structure and optical properties from first principles. We identify the fingerprint of the neutral charge state of the defect in the scanning tunnelling spectrum. In the neutral defect, the giant spin-orbit coupling mixes the singlet and triplet excited states with resulting in phosphorescence at the telecom band that can be used to read out the spin state, and coherent driving with microwave excitation is also viable. Our results establish a scalable qubit in a two-dimensional material with spin-photon interface at the telecom wavelength region.
在二维半导体中识别和制造缺陷量子比特对于探索量子信息和传感应用的候选材料具有重要意义。最近取得了一个里程碑式的成果,即证明了单层二硫化钨中单个硫原子被碳原子取代的单个缺陷可以在原子尺寸精度上按需设计,这为可扩展且可寻址的单元带来了希望。揭示其作为量子比特的潜力是当务之急。为此,我们从第一性原理确定其电子结构和光学性质。我们在扫描隧道谱中识别出缺陷中性电荷态的指纹。在中性缺陷中,巨大的自旋轨道耦合混合了单重态和三重态激发态,导致在电信波段产生磷光,可用于读出自旋态,并且用微波激发进行相干驱动也是可行的。我们的结果在电信波长区域建立了具有自旋 - 光子界面的二维材料中的可扩展量子比特。