1] Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA [2].
1] Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA [2] Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [3].
Nat Nanotechnol. 2014 Sep;9(9):682-6. doi: 10.1038/nnano.2014.167. Epub 2014 Aug 24.
Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because two-dimensional MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions. Theory predicts that many stacked MX2 heterostructures form type II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting. Here, we report the first experimental observation of ultrafast charge transfer in photoexcited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel two-dimensional devices for optoelectronics and light harvesting.
范德华异质结构最近成为一类新型材料,其中堆叠的原子层状二维材料(包括石墨烯、六方氮化硼和过渡金属二卤化物(MX2))之间的量子耦合产生了迷人的新现象。MX2 异质结构对于新型光电和光伏应用特别令人兴奋,因为二维 MX2 单层在近红外到可见光谱范围内具有光学带隙,并表现出极强的光物质相互作用。理论预测,许多堆叠的 MX2 异质结构形成 II 型半导体异质结,有利于光探测和收集的高效电子空穴分离。在这里,我们使用荧光成像和飞秒泵浦探测光谱学首次实验观察到光激发的 MoS2/WS2 异质结构中的超快电荷转移。我们表明,光激发后 50fs 内发生从 MoS2 层到 WS2 层的空穴转移,这对于范德华耦合的二维层来说是一个显著的速率。范德华异质结构中的这种超快电荷转移可以实现用于光电和光收集的新型二维器件。