Suppr超能文献

果蝇蕈形体中细胞类型特异性转录组分析揭示了与记忆相关的基因表达变化。

Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.

作者信息

Crocker Amanda, Guan Xiao-Juan, Murphy Coleen T, Murthy Mala

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Paul F. Glenn Laboratories for Aging Research, Princeton University, Princeton, NJ 08544, USA.

出版信息

Cell Rep. 2016 May 17;15(7):1580-1596. doi: 10.1016/j.celrep.2016.04.046. Epub 2016 May 5.

Abstract

Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation.

摘要

果蝇的学习和记忆形成依赖于蘑菇体(MBs)中的神经元网络。尽管众多研究已经阐明了该网络中单个细胞类型在学习或记忆方面的作用,但这些细胞是否也能通过它们所表达的基因来区分仍未得到解决。此外,尚未按神经元类型研究伴随MBs内长期记忆形成的基因表达变化。在这里,我们通过对MB内的单细胞类型(通过膜片吸管采集)进行RNA测序来解决这两个问题。我们发现,编码细胞表面受体的基因表达足以识别细胞类型,并且这些基因中的一个子集,是外周感觉神经元中感觉转导所必需的,不仅在中枢脑MB的单个神经元内表达,而且对记忆形成也至关重要。

相似文献

1
Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.
Cell Rep. 2016 May 17;15(7):1580-1596. doi: 10.1016/j.celrep.2016.04.046. Epub 2016 May 5.
2
Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory.
J Neurosci. 2016 Sep 14;36(37):9535-46. doi: 10.1523/JNEUROSCI.3730-15.2016.
5
Regulators of Long-Term Memory Revealed by Mushroom Body-Specific Gene Expression Profiling in .
Genetics. 2018 Aug;209(4):1167-1181. doi: 10.1534/genetics.118.301106. Epub 2018 Jun 20.
6
Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Mushroom Bodies.
G3 (Bethesda). 2019 Jan 9;9(1):81-94. doi: 10.1534/g3.118.200726.
7
Differential microarray analysis of Drosophila mushroom body transcripts using chemical ablation.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14417-22. doi: 10.1073/pnas.0606571103. Epub 2006 Sep 13.
9
Drosophila long-term memory formation involves regulation of cathepsin activity.
Nature. 2004 Jul 22;430(6998):460-3. doi: 10.1038/nature02726.
10
Transposition-driven genomic heterogeneity in the Drosophila brain.
Science. 2013 Apr 5;340(6128):91-5. doi: 10.1126/science.1231965.

引用本文的文献

1
The circadian genes are required in DAL neurons for long-term memory formation.
Front Neurosci. 2025 Jun 30;19:1623251. doi: 10.3389/fnins.2025.1623251. eCollection 2025.
5
Targeted single cell expression profiling identifies integrators of sleep and metabolic state.
bioRxiv. 2024 Sep 27:2024.09.25.614841. doi: 10.1101/2024.09.25.614841.
7
What do the mushroom bodies do for the insect brain? Twenty-five years of progress.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053827.123. Print 2024 May.
8
Octopamine in the mushroom body circuitry for learning and memory.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053839.123. Print 2024 May.
9

本文引用的文献

1
Memory-Relevant Mushroom Body Output Synapses Are Cholinergic.
Neuron. 2016 Mar 16;89(6):1237-1247. doi: 10.1016/j.neuron.2016.02.015. Epub 2016 Mar 3.
2
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
Nat Neurosci. 2016 Feb;19(2):335-46. doi: 10.1038/nn.4216. Epub 2016 Jan 4.
3
Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila.
Cell. 2015 Dec 17;163(7):1742-55. doi: 10.1016/j.cell.2015.11.019.
4
Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila.
Neuron. 2015 Dec 2;88(5):985-998. doi: 10.1016/j.neuron.2015.11.003.
5
Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
Nature. 2015 Oct 8;526(7572):258-62. doi: 10.1038/nature15396. Epub 2015 Sep 30.
6
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Cell. 2015 May 21;161(5):1202-1214. doi: 10.1016/j.cell.2015.05.002.
7
Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory.
Cell Rep. 2015 May 26;11(8):1280-92. doi: 10.1016/j.celrep.2015.04.044. Epub 2015 May 14.
8
Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila.
Neuron. 2015 Apr 22;86(2):417-27. doi: 10.1016/j.neuron.2015.03.025. Epub 2015 Apr 9.
9
Insulin signaling is acutely required for long-term memory in Drosophila.
Front Neural Circuits. 2015 Mar 10;9:8. doi: 10.3389/fncir.2015.00008. eCollection 2015.
10
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.
Science. 2015 Mar 6;347(6226):1138-42. doi: 10.1126/science.aaa1934. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验