Shih Meng-Fu M, Zhang Jiwei, Brown Elizabeth B, Dubnau Josh, Keene Alex C
Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
Department of Biology, Texas A&M University, College Station, TX 77840, USA.
G3 (Bethesda). 2025 Jun 13. doi: 10.1093/g3journal/jkaf079.
Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, Drosophila melanogaster, suppresses sleep in response to acute food deprivation, presumably to forage for food. This process is dependent on a single pair of Lateral Horn Leucokinin (LHLK) neurons, that secrete the neuropeptide Leucokinin. These neurons signal to insulin producing cells and suppress sleep under periods of starvation. The identification of individual neurons that modulate sleep-metabolism interactions provides the opportunity to examine the cellular changes associated with sleep modulation. Here, we use single-cell sequencing of LHLK neurons to examine the transcriptional responses to starvation. We validate that a targeted single-cell sequencing approach selectively isolates RNA from individual LHLK neurons. Single-cell CEL-Seq comparisons of LHLK neurons between fed and 24-h starved flies identified 24 genes that are differentially expressed in accordance with starvation state. In total, 12 upregulated genes and 12 downregulated genes were identified. Gene-ontology analysis showed an enrichment for Attacins, a family of antimicrobial peptides, along with a number of transcripts with diverse roles in regulating cellular function. Targeted knockdown of differentially expressed genes identified multiple genes that function within LHLK neurons to regulate sleep-metabolism interactions. Functionally validated genes include an essential role for the E3 ubiquitin ligase insomniac, the sorbitol dehydrogenase Sodh1, as well as AttacinC and AttacinB in starvation-induced sleep suppression. Taken together, these findings provide a pipeline for identifying novel regulators of sleep-metabolism interactions within individual neurons.
动物会根据其内部和外部环境来调节睡眠。代谢信号是睡眠的特别有力的调节因子,使动物能够根据食物供应情况和觅食持续时间改变其睡眠时间和睡眠量。果蝇(黑腹果蝇)在急性食物剥夺时会抑制睡眠,大概是为了觅食。这个过程依赖于一对分泌神经肽亮氨酸激肽的外侧角亮氨酸激肽(LHLK)神经元。这些神经元向产生胰岛素的细胞发出信号,并在饥饿期间抑制睡眠。对调节睡眠 - 代谢相互作用的单个神经元的鉴定为研究与睡眠调节相关的细胞变化提供了机会。在这里,我们使用LHLK神经元的单细胞测序来研究对饥饿的转录反应。我们验证了一种靶向单细胞测序方法能从单个LHLK神经元中选择性地分离RNA。对喂食和饥饿24小时的果蝇的LHLK神经元进行单细胞CEL-Seq比较,确定了24个根据饥饿状态差异表达的基因。总共鉴定出12个上调基因和12个下调基因。基因本体分析显示抗菌肽Attacins家族富集,以及许多在调节细胞功能中具有不同作用的转录本。对差异表达基因的靶向敲低鉴定出多个在LHLK神经元内发挥作用以调节睡眠 - 代谢相互作用的基因。功能验证的基因包括E3泛素连接酶失眠蛋白、山梨醇脱氢酶Sodh1以及AttacinC和AttacinB在饥饿诱导的睡眠抑制中的重要作用。综上所述,这些发现提供了一个在单个神经元内识别睡眠 - 代谢相互作用新调节因子的途径。