Suppr超能文献

相似文献

1
Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH.
J Am Chem Soc. 2016 Jun 8;138(22):7143-50. doi: 10.1021/jacs.6b03422. Epub 2016 May 10.
2
Surveying protein structure and function using bis-arsenical small molecules.
Acc Chem Res. 2011 Sep 20;44(9):654-65. doi: 10.1021/ar2001028. Epub 2011 Jul 18.
3
Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy.
J Am Chem Soc. 2009 Apr 8;131(13):4613-5. doi: 10.1021/ja809315x.
4
Bipartite tetracysteine display requires site flexibility for ReAsH coordination.
Chembiochem. 2009 Jul 6;10(10):1644-7. doi: 10.1002/cbic.200900207.
7
Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.
Nat Biotechnol. 2005 Oct;23(10):1308-14. doi: 10.1038/nbt1136. Epub 2005 Sep 11.
8
Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH.
Nat Chem Biol. 2007 Dec;3(12):779-84. doi: 10.1038/nchembio.2007.49. Epub 2007 Nov 4.
10
Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes.
Bioconjug Chem. 2007 Jul-Aug;18(4):1259-65. doi: 10.1021/bc0603900. Epub 2007 Jun 15.

引用本文的文献

1
Single-molecule orientation-localization microscopy: Applications and approaches.
Q Rev Biophys. 2024 Dec 23;57:e17. doi: 10.1017/S0033583524000167.
2
Site-Specific and Fluorescently Enhanced Installation of Post-Translational Protein Modifications via Bifunctional Biarsenical Linker.
ACS Omega. 2024 Oct 30;9(45):45127-45137. doi: 10.1021/acsomega.4c05828. eCollection 2024 Nov 12.
3
Illuminating the multiple Lewis acidity of triaryl-boranes atropisomeric dative adducts.
Chem Sci. 2024 Aug 26;15(38):15679-89. doi: 10.1039/d4sc00925h.
4
In vivo three-dimensional brain imaging with chemiluminescence probes in Alzheimer's disease models.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2310131120. doi: 10.1073/pnas.2310131120. Epub 2023 Dec 4.
6
Thiol-Mediated Uptake.
JACS Au. 2021 May 3;1(6):710-728. doi: 10.1021/jacsau.1c00128. eCollection 2021 Jun 28.
7
Discrete Coiled Coil Rotamers Form within the EGFRvIII Juxtamembrane Domain.
Biochemistry. 2020 Oct 20;59(41):3965-3972. doi: 10.1021/acs.biochem.0c00641. Epub 2020 Oct 5.
9
Distance-Matched Tagging Sequence Optimizes Live-Cell Protein Labeling by a Biarsenical Fluorescent Reagent AsCy3_E.
ACS Omega. 2018 Feb 28;3(2):2104-2110. doi: 10.1021/acsomega.8b00037. Epub 2018 Feb 21.
10
Mechanism of Allosteric Coupling into and through the Plasma Membrane by EGFR.
Cell Chem Biol. 2018 Jul 19;25(7):857-870.e7. doi: 10.1016/j.chembiol.2018.04.005. Epub 2018 May 3.

本文引用的文献

1
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
2
The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
Nature. 2016 Mar 31;531(7596):665-8. doi: 10.1038/nature17154. Epub 2016 Mar 23.
5
Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region.
Chem Biol. 2015 Jun 18;22(6):776-84. doi: 10.1016/j.chembiol.2015.05.008.
6
Structural Differences between Wild-Type and Double Mutant EGFR Modulated by Third-Generation Kinase Inhibitors.
J Am Chem Soc. 2015 May 27;137(20):6456-9. doi: 10.1021/jacs.5b02326. Epub 2015 May 14.
7
How FlAsH got its sparkle: historical recollections of the biarsenical-tetracysteine tag.
Methods Mol Biol. 2015;1266:1-6. doi: 10.1007/978-1-4939-2272-7_1.
10
T-CrAsH: a heterologous chemical crosslinker.
Chembiochem. 2014 Aug 18;15(12):1765-8. doi: 10.1002/cbic.201402189. Epub 2014 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验