Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407, USA.
Nanocellect Biomedical, Inc., San Diego, CA 92121, USA.
Analyst. 2016 Jun 20;141(13):4142-50. doi: 10.1039/c6an00295a.
Although a flow cytometer, being one of the most popular research and clinical tools for biomedicine, can analyze cells based on the cell size, internal structures such as granularity, and molecular markers, it provides little information about the physical properties of cells such as cell stiffness and physical interactions between the cell membrane and fluid. In this paper, we propose a computational cell analysis technique using cells' different equilibrium positions in a laminar flow. This method utilizes a spatial coding technique to acquire the spatial position of the cell in a microfluidic channel and then uses mathematical algorithms to calculate the ratio of cell mixtures. Most uniquely, the invented computational cell analysis technique can unequivocally detect the subpopulation of each cell type without labeling even when the cell type shows a substantial overlap in the distribution plot with other cell types, a scenario limiting the use of conventional flow cytometers and machine learning techniques. To prove this concept, we have applied the computation method to distinguish live and fixed cancer cells without labeling, count neutrophils from human blood, and distinguish drug treated cells from untreated cells. Our work paves the way for using computation algorithms and fluidic dynamic properties for cell classification, a label-free method that can potentially classify over 200 types of human cells. Being a highly cost-effective cell analysis method complementary to flow cytometers, our method can offer orthogonal tests in companion with flow cytometers to provide crucial information for biomedical samples.
虽然流式细胞仪是生物医学领域最受欢迎的研究和临床工具之一,它可以根据细胞大小、颗粒度等内部结构以及分子标记物来分析细胞,但它几乎无法提供关于细胞物理特性的信息,如细胞硬度和细胞膜与流体之间的物理相互作用。在本文中,我们提出了一种使用细胞在层流中不同平衡位置的计算细胞分析技术。该方法利用空间编码技术获取微流控通道中细胞的空间位置,然后使用数学算法计算细胞混合物的比例。最独特的是,发明的计算细胞分析技术可以在不标记的情况下明确检测到每个细胞类型的亚群,即使细胞类型与其他细胞类型在分布图上存在显著重叠,这种情况限制了传统流式细胞仪和机器学习技术的使用。为了证明这一概念,我们已经应用该计算方法来区分未经标记的活细胞和固定细胞、从人血中计数嗜中性粒细胞,以及区分药物处理的细胞和未处理的细胞。我们的工作为使用计算算法和流体动力学特性进行细胞分类铺平了道路,这是一种无需标记的方法,可以潜在地对 200 多种类型的人类细胞进行分类。作为一种与流式细胞仪互补的高性价比细胞分析方法,我们的方法可以与流式细胞仪一起提供正交测试,为生物医学样本提供关键信息。