Suppr超能文献

用于高通量成像流式细胞术的无标记细胞周期分析

Label-free cell cycle analysis for high-throughput imaging flow cytometry.

作者信息

Blasi Thomas, Hennig Holger, Summers Huw D, Theis Fabian J, Cerveira Joana, Patterson James O, Davies Derek, Filby Andrew, Carpenter Anne E, Rees Paul

机构信息

Imaging Platform at the Broad Institute of Harvard and MIT, 415 Main St, Cambridge, Massachusetts 02142, USA.

Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.

出版信息

Nat Commun. 2016 Jan 7;7:10256. doi: 10.1038/ncomms10256.

Abstract

Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types.

摘要

成像流式细胞术将传统流式细胞术的高通量能力与单细胞成像相结合。在此,我们通过将监督机器学习应用于从明场以及成像流式细胞仪中通常被忽略的暗场细胞图像提取的形态学特征,来展示DNA含量的无标记预测和有丝分裂细胞周期阶段的定量分析。该方法有助于对细胞进行非破坏性监测,避免荧光染料潜在的混淆效应,同时最大化可用的荧光通道。该方法对固定和活的哺乳动物细胞的细胞周期分析均有效,并且能准确评估细胞周期有丝分裂期阻断剂的影响。由于相同方法在预测裂殖酵母的DNA含量方面有效,因此它可能在其他细胞类型中具有广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e41/4729834/213e32d4234f/ncomms10256-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验